期刊文献+

整值随机序列滑动平均的小偏差定理 被引量:2

Small Deviation Theorems for Moving Averages of Integer-valued Random Sequence
下载PDF
导出
摘要 引入随机序列滑动似然比,作为任意整值随机序列相对于服从Poisson分布的独立随机变量序列偏差的一种度量,通过滑动相对熵给出样本空间的一个子集,在此子集上得到一类关于随机序列滑动平均的用不等式表示的强极限定理,即小偏差定理。 A moving likelihood ratio is employed as a metric of the deviation of a sequence of integer-valued random variables from independent random sequence with Poisson distribution. By restricting the moving relative entropy, a subset of the sample space is given, and on this subset, a class of strong limit theorems about moving average of random sequence,represented with inequalities, namely small deviation theorems, are obtained.
出处 《安徽工业大学学报(自然科学版)》 CAS 2012年第1期89-91,共3页 Journal of Anhui University of Technology(Natural Science)
基金 安徽省教育厅科研基金(KJ2010A337) 安徽工业大学研究生创新研究基金(20102008)
关键词 滑动相对熵 滑动平均 POISSON分布 小偏差定理 moving relative entropy moving average Poisson distribution small deviation theorem
  • 相关文献

参考文献8

  • 1汪忠志,杨卫国.关于随机序列滑动平均的若干强偏差定理[J].工程数学学报,2011,28(5):702-706. 被引量:10
  • 2Billingsley P, Probability and Measure[M].New York:Wiley, 1986.
  • 3刘文.强偏差定理与分析方法[M].北京:科学出版社,2002.
  • 4方木云,汤红霞.非单位步长双环网络平均直径的研究[J].华中科技大学学报(自然科学版),2009,37(6):12-15. 被引量:12
  • 5Jain N C. Tail probabilities for sums of independent Banach space valued random variables[J]. Z.Wahrscheinlichkeitsheorie Verw. Gebiete, 1975,33:155 - 166.
  • 6Gaposhkin V F. The law of large numbers for moving averages of independent random[J]. Mathcmatichcski Zamctki, 1987,42(I ): 124-131.
  • 7Barton P.The strong ergodic theorem for densitics:Generalized Shannon-McMillan-Breiman theorem[J]. The Annals of Probability, 1985,13:1292-1303.
  • 8Lai T L. Limit theorems for delayed sums[J]. The Annals of Probability,1974,2(3):432-440.

二级参考文献20

共引文献23

同被引文献14

  • 1Lid T L Summability methods for independent identically distributed random varibles[J]. Proceedings of the Amercan Mathematical Soclety, 1974,45(2):253-261.
  • 2Jaln N C. Tail probabilities for sums of independent Banach space valued random varlables[J].Z Wahrscheinlichkeitsheorie Verw C, ebiete, 1975,33(3):155-166.
  • 3Mason D M. An extended version of the Erdas-R e nyi strong law of large numbers[J].Annals of Probability,1989,17(1):257-265.
  • 4Liu W. Belative entropy densities and a class of limit theorems or the sequence of m-valude random variables[J]. Annals of Probability, 1990,18(2):829-839.
  • 5Gaposhkin V F. The law of large numbers for moving averages of independent random[J]. Mathematicheskie Zametid, 1987,42(1):124-131.
  • 6Shepp L A. A Limit law of concerning moving averages[J]. Annals of Mathematical Statistcis, 1964,35(1):424-428.
  • 7Jain N C. Tail probabilities for sums of independent Ba-nach space valued random variables[J].ProbabilityTheory and Related Fields,1975.155-166.
  • 8Caposhkin V F. The law of large numbers for moving av-erages of independent random[J].MathematicheskieZametki,1987,(01):124-131.
  • 9Mason D M. An extended version of the Erdos-R e nyistrong law of large numbers[J].Annals of Probability,1989,(01):257-265.
  • 10Liu W. Relative entropy densities and a class of limittheorems or the sequence of m-value random variables[J].Annals of Probability,1990,(02):829-839.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部