期刊文献+

基于粒子群优化的稀疏分解变尺度快速算法 被引量:4

Fast variable matrix algorithm for sparse decomposition based on PSO
下载PDF
导出
摘要 针对一类可分稀疏性度量函数,结合最优化理论,研究了稀疏信号重构的快速算法。稀疏分解可以看成是一个带等式约束的优化问题,首先利用惩罚函数法将其转化为无约束优化问题;然后在粒子群优化估计搜索步长的基础上,利用变尺度法寻找无约束优化问题的最优解;最后依次增大惩罚因子,直至稀疏表示系数满足分解精度的要求。该算法避免了矩阵求逆运算,且无需先验地选取惩罚因子。仿真实验验证了算法的有效性和快速性。 For a class of separable sparsity-measure functions,a fast algorithm for the reconstruction of sparse signals is researched based on the optimization theory.The sparse decomposition is regarded as an optimization problem with constrained equations.Firstly,it is transformed to a nonconstraint optimization problem using the penalty function method.Then,based on the estimation of the search step via particle swarm optimization,the variable matrix method is used to search the solution for the problem.Finally,the penalty factor is gradually augmented until the sparse coefficients meet the demand of decomposition precision.In the proposed algorithm,the matrix inversion operation is avoided,and it is unnecessary to choose the penalty factor in apriority.The availability and rapidity of the algorithm is validated by simulation experiment.
作者 韩宁 尚朝轩
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第1期46-49,共4页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2008AA0194)资助课题
关键词 稀疏分解 等式约束优化 变尺度法 粒子群优化 sparse decomposition equation constrained optimization variable matrix method particle swarm optimization
  • 相关文献

参考文献15

  • 1YuanWeiming WangMin WuShunjun.ALGORITHM FOR THE DETECTION AND PARAMETER ESTIMATION OF MULTICOMPONENT LFM SIGNALS[J].Journal of Electronics(China),2005,22(2):185-189. 被引量:7
  • 2Elad M, Matalon B, Zibulevsky M. Image denoising withshrinkage and redundant representations[C] // Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006 :1924 - 1931.
  • 3Li Y Q, Andrzej C. Analysis of sparse representation and blind source reparation[J]. Neural Computation,2004,16(6) :1193 - 1234.
  • 4Rao B D, Engan K, Cotter S F, et al. Subset selection in noise based on diversity measure minimization[J].IEEE Trans. on Signal Processing, 2003,51 (3) : 760 - 770.
  • 5程文波,王华军.信号稀疏表示的研究及应用[J].西南石油大学学报(自然科学版),2008,30(5):148-151. 被引量:14
  • 6Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries[J].IEEE Trans. on Signal Processing, 1993,41 (12) :3397 - 3415.
  • 7Cotter S F, Adler J, Rao B D, et al. Forward sequential algo- rithms for best basis selection[J]. IEE Proceeding of Vision, Image and Signal Processing, 1999,146(5) : 235 - 244.
  • 8Cotter S F, Kreutz D K, Rao B D. Efficient backward elimination algorithm for sparse signal representation using overcomplete dictiona- ries[J].IEEE Signal Processing Letters, 2002,9 (5) : 145 - 147.
  • 9杜小勇,胡卫东,郁文贤.推广的正则化FOCUSS算法及收敛性分析[J].系统工程与电子技术,2005,27(5):922-925. 被引量:17
  • 10王春光,徐安凤,孙即祥,王红.粒子群优化在心电信号稀疏分解中的应用[J].计算机工程与设计,2008,29(16):4311-4314. 被引量:3

二级参考文献40

共引文献50

同被引文献65

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部