期刊文献+

基于压缩感知的条带随机噪声雷达稀疏成像方法 被引量:4

Sparse imaging method with strip-map random noise radar based on compressive sensing
下载PDF
导出
摘要 将压缩感知理论与条带随机噪声雷达相结合,在假设场景目标稀疏的前提下,通过构造随机噪声的不同时延矩阵为稀疏变换矩阵以及通过构造随机噪声与部分单位阵的乘积为观测矩阵,提出了一种基于压缩感知的条带随机噪声雷达稀疏成像方法。该方法能在大幅减少回波信号采样数据量的前提下,准确重建出原始场景目标高分辨像。仿真结果证明了该方法的有效性与鲁棒性。 The compressive sensing(CS) theory and the strip-map random noise radar are connected.A new sparse imaging method with strip-map random noise radar based on CS is proposed on the basis of supposing of sparse scene targets.In the method,the sparse transform matrix is designed as the different delay matrixes of random noises,and the measurement matrix is designed as the product of random noise and partial unit matrix.The number of the sampling data of returned signals is reduced apparently,and the high quality scene image can be obtained by using the method.Simulation results prove the effectiveness and robustness of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第1期56-63,共8页 Systems Engineering and Electronics
基金 国家重点基础研究发展计划(973计划)(2010CB731905)资助课题
关键词 高分辨条带成像雷达 随机噪声信号 压缩感知 high resolution strip-map imaging radar random noise signal compressive sensing
  • 相关文献

参考文献25

  • 1Dawood M, Narayanan R M. Ambiguity function of a ultrawideband random noise radar[C]// Proc. of the IEEE Antennas and Propa- gation Society International Symposium, 2000 : 2142 - 2145.
  • 2Narayanan R M, Xu Y, Hoffmeyer P D, et al. Design, per- formance, and applications of a coherent ultra wideband random noise radar[J]. Optical Engineering, 1998,37(6) : 1855 - 1869.
  • 3张先义,苏卫民,顾红.随机噪声超宽带雷达信号性能分析[J].兵工学报,2007,28(5):557-560. 被引量:13
  • 4江海,林月冠,张冰尘,洪文.基于压缩感知的随机噪声成像雷达[J].电子与信息学报,2011,33(3):672-676. 被引量:18
  • 5Donoho D. Compressed sensing[J]. IEEE Trans. on Informa- tion Theory ,2006,52(4) :1289 - 1306.
  • 6Baraniuk R. A lecture on compressive sensing[J]. IEEE Signal Processing Magazine, 2007,24 (4) : 1 - 9.
  • 7Herman M, Strohmer T. High-resolution radar via compressedsensing[J]. IEEE Trans. on Signal Processing, 2009,57 (6):2275 - 2284.
  • 8Yoon Y, Amin M. Compressed sensing technique for high-resolution radar imaging[J]. Proceedings of SPIE, 2008,6968 (1 A) : 1 - 10.
  • 9Zhang L, Xing M, Qiu C, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing[J]. IEEE Trans. on Geoscience and Remote Sensing ,2010,48(10) :3824 - 3838.
  • 10Tello M, L6pez-Dekker P, Mallorqui J. A novel strategy for radar imaging based on compressive sensing[C]// Proc. of the IEEE International Geoscienle and Renmte Sensing Symposium,2008:213 - 216.

二级参考文献87

  • 1黄源宝,李真芳,保铮.机载大斜视SAR的快速简易成像方法[J].西安电子科技大学学报,2004,31(4):543-546. 被引量:6
  • 2Daniels D J. Surface-penetrating radar[J]. Electronics and Communication Engineering Jourual, 1996, 8(4): 165-182.
  • 3Fang G Y. The research activities of ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Marina Mandarin Hotel, Singapore, Sept. 24-26, 2007: 43-45.
  • 4Xu X and Miller E L. Optimization of migration method to locate buried object in lossy medium[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, Jun. 24-28, 2002: 337-339.
  • 5Leuschen C J and Plumb R G. A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 929-936.
  • 6Carin L, Geng N, and McClure M, et al.. Ultra-wide-band synthetic-aperture radar for mine-field detection[J]. IEEE Antennas and Propagation Magazine, 1999, 41(1): 18-33.
  • 7Hayakawa H, Nadamoto A, and Uesaka S. 3D radar imaging of buried objects using arbitrary scaning GPR[C]. Eighth International Conference on Ground Penetrating Radar, Queensland, Australia, May 23-26, 2000: 273-276.
  • 8Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 9Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8): 1207-1223.
  • 10Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.

共引文献143

同被引文献32

  • 1耿文东.编队目标跟踪综述[c]//第十届全国雷达学术年会.北京:国防工业出版社,2008:367-371.
  • 2何友,修建娟,张晶炜.雷达数据处理及应用[M].2版.北京:电子工业出版社,2011:112-118.
  • 3Jian L, Li X R. Tracking of maneuvering non-ellipsoidal extend- ed object or target group using random matrix[J]. IEEE Trans. on Signal Processing, 2014, 62(9) : 2450 - 2463.
  • 4Feldmann M, Franken D, Koch W. Tracking of extended ob- jects and group targets using random matriees[J]. IEEE Trans. on Signal Processing, 2011, 59(4) :1409 - 1420.
  • 5Hyondong O, Seungkeun K, Hyo S S, et al. Coordinated stand- off tracking of moving target groups using multiple UAVs[J]. I EEE Trans. on Aerospace and Electronic Systems, 2015,51 (2) : 1501 - 1514.
  • 6Ziho K, Landry S J. An eye movement analysis algorithm for a multielement target tracking task: maximum transition-based agglomerative hierarchical clustering[J]. IEEE Trans. on Hu- man Machine Systems, 2015, 45 (1) : 13 - 24.
  • 7Bar S Y. Extension of the probabilistic data association filter in multi-target tracking[C]// Proc. of the 5th Symposium on Non- Linear Estatimation , 1974:16 - 21.
  • 8王海鹏.多传感器编队目标跟踪算法研究[D].烟台:海军航空工程学院,2012.
  • 9Pietro S O, Carsten Witt. Improved time complexity analysis oF the simple genetic algorithm[J]. Theoretical Computer Science, 2015, 605(9):21-41.
  • 10Xia J, Shang P, Wang J, et al. Permutation and weighted- permutation entropy analysis for the complexity of nonlinear time series[J]. Communications in Nonlinear Science and Nu- merical Simulation, 2016, 31(1) :60 - 68.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部