期刊文献+

一种基于交叉验证的稳健SL0目标参数提取算法 被引量:1

Cross validation based robust-SL0 algorithm for target parameter extraction
下载PDF
导出
摘要 利用雷达目标在空间的稀疏特性,研究了一种基于压缩感知的伪随机频率步进雷达(compressive sensing based pseudo-random step frequency radar,CS-PRSFR)。首先,在分析CS-PRSFR目标回波的基础上,建立了目标参数提取模型;然后,针对在噪声统计特性未知时,传统稀疏信号重构算法无法适用的问题,提出一种基于交叉验证的稳健SL0(robust SL0based on cross validation,CV-RSL0)目标参数提取算法。CS-PRSFR由于其感知矩阵较强的非相关性,可获得更高的距离-速度联合分辨性能;该算法无需已知噪声统计特性,随着信噪比的提高,其目标参数提取性能能够快速逼近最佳估计的下限。仿真结果表明该方法的正确性和有效性。 Utilizing the space sparsity property of radar targets,a compressive sensing based pseudo-random step frequency radar(CS-PRSFR) is studied.Firstly,the CS-PRSFR targets echo is analyzed and the targets parameter extracting model is constructed.To solve the problem of inapplicability of traditional sparse signal reconstruction algorithms amid noise of unknown statistics,a cross validation based robust SL0(CV-RSL0) algorithm extracting the parameter of targets is proposed.Because of the better incoherence of the sensing matrix,the CS-PRSFR can obtain a higher range-velocity joint resolution performance.The proposed algorithm needs no prior information of the noise statistics,and the performance of its targets parameter extraction can rapidly approach the lower bound of the best estimator as the signal to noise ratio improving.Simulation results illuminate the correctness and efficiency of this method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第1期64-68,共5页 Systems Engineering and Electronics
基金 南京理工大学自主科研专项计划(2010ZDJH05)资助课题
关键词 伪随机频率步进雷达 压缩感知 交叉验证 稳健SL0算法 pseudo-random step frequency radar compressive sensing cross validation robust-SL0 algorithm
  • 相关文献

参考文献20

  • 1Wehner D R. High resolution radar [M]. 2nd ed. London: Artech House, 1995.
  • 2Axelsson S R J. Analysis of random step frequency radar and comparison withexperiments [J]. IEEE Trans. on Geoscience and Remote Sensing ,2007,45(4) :890 - 904.
  • 3Baraniuk R G, Cands E J, Elad M , et al. Applications of sparserepresentation and compressive sensing [J].Proceedings of the IEEE, 2010,98 (6) : 906 - 909.
  • 4Cand~s E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J].IEEE Trans. on Information Theory, 2006, 52(2) :489 - 509.
  • 5Donoho D L. Compressed sensing [J].IEEE Trana. on In for marion Theory, 2006,52 (4) : 1289 - 1306.
  • 6Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6) :1006 - 1020.
  • 7Baraniuk R, Steeghs P. Compressive radar imaging [C]// Proc. of the IEEE International Radar Conference, 2007 : 128 - 138.
  • 8Tello A M, L6pez-Dekker F, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J].IEEE Trans. on Geoscience and Remote Sensing, 2010,48 (12) : 4285 - 4295.
  • 9Gurbuz A C, McClellan J H, Scott W R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs[J].IEEE Trans. on Signal Processing, 2009,57 (7) : 2640 - 2650.
  • 10Suksmono A B, Bharata E, Lestari A A, et al. Compressive steppe& frequency continuous-wave ground-penetrating radar[J].IEEE Geo science and Remote Sensing Letters,2010,7(4) :665 - 669.

同被引文献18

  • 1Cand:s E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 2Mohimani H, Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed L0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
  • 3Hyder M M and Mahata K. An improved smoothed L0 approximation algorithm for sparse representation[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2194-2205.
  • 4Lv J, Huang L, Shi Y, et al: Inverse synthetic aperture radar imaging via modified smoothed L0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13(7): 1235-1238.
  • 5Liu Z, You P, Wei X, et al: Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoseience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
  • 6Guo L and Wen X. SAR image compression and reconstruction based on compressed sensing[J]. Journal of Information gz Computational Science, 2014, 11(2): 573-579.
  • 7Liu Z, Wei X, and Li X. Aliasing-free micro-Doppler analysis based on short-time compressed sensing[J]. IET Signal Processing, 2013, 8(2): 176-187.
  • 8Liu T and Zhou J. Improved smoothed L0 reconstruction algorithm for ISI sparse channel estimation[J]. The Journal o/ China Universities of Posts and Telecommunications, 2014, 21(2): 40-47.
  • 9Ye X and Zhu W. Sparse channel estimation of pulse-shapingmultiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient L2-SLO reconstruction algorithm[J]. IET Communications, 2014, 8(7) 1124-1131.
  • 10Gorodnitsky I F and Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a reweighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部