期刊文献+

基于多重稀疏表示的声纳图像超分辨率重建方法 被引量:4

Super-resolution reconstruction method for sonar image based on multi-layer sparse representation
下载PDF
导出
摘要 提出一种基于多重稀疏表示的声纳图像超分辨率重建方法。该方法针对声纳图像的光滑、边缘和纹理3种结构形态,分别利用离散平稳小波变换、contourlet小波变换和Gabor小波变换建立过完备字典,并对多重稀疏表示的声纳图像进行超分辨率重建。实验结果表明,该方法得到的超分辨率图像能够有效保持原始高分辨率图像的几何特征和纹理特征,可以得到更高的峰值信噪比,并且对噪声具有鲁棒性。 A super-resolution reconstruction method for sonar image based on multi-layer sparse representation is proposed.As for the smooth,edge and texture of the sonar image,the discrete wavelet transform,the contourlet wavelet transform and the Gabor wavelet transform are used to establish the over-complete dictionary respectively.Then the multi-layer sparse represented sonar image is reconstructed in super-resolution.Experimental results show that the super-resolution images can maintain the geometric features and texture features of original high-resolution images effectively.Moreover,the proposed method is robust to noises and can achieve a higher peak signal to noise ratio compared with other methods.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第1期204-207,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60904087) 黑龙江省博士后科技启动基金(LBH-Q09127)资助课题
关键词 超分辨率 稀疏表示 声纳图像 过完备字典 super-resolution sparse representation sonar image over-complete dictionary
  • 相关文献

参考文献13

  • 1Farsiu S, Robinson M D, Elad M, et al. Fast and robust multi frame super resolution[J]. IEEE Trans. on Image Processing, 2004,13(10) :1327 - 1344..
  • 2Blatt D, Hero A O. Energy based sensor network source locali zation via projection onto convex set (POCS)[J]. IEEE Trans. on Signal Processing,2006,54(9) :3614 - 3619.
  • 3Chou W, Siohan O, Myrvoll T A. Extended maximum a posterior linear regression (EMAPLR) model adaptation for speech recogni- tion[C]//Proc, of the 6th Internetional ConJerence on Spoken Language Processing, 2000 : 616 - 619.
  • 4陈光盛,李树涛.MAP和POCS算法实现超分辨率图像的重建[J].科学技术与工程,2006,6(4):396-399. 被引量:8
  • 5Axulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans. on Signal Processing, 2002,50 (2) :174 - 188.
  • 6Yang J C, Wright J, Huan T, et al. Image supeFresolution as sparse representation of raw image patches [C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008:1 -8.
  • 7Ng M K, Bose N K. Mathematical analysis of super-resolution meth- odology[J].IEEE Trans. on Signal Processing, 2003,20 (3) : 62 - 74.
  • 8Meyer Y. Oscillating patterns in image processing and nonlinear evolution equation [M]. Eoston : American Mathematical Society Press,2001:35 - 46.
  • 9Wang X H, Istepanian R S H, Song Y H. Microarry image enhancement by denosing using stationary wavelet transform[J].IEEE Trans. on Nano Bioscience ,2000,2(4) :184 - 189.
  • 10Do N M, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Trans. on Image Processing,2005,14(12):2016-2019.

二级参考文献29

  • 1Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 2Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 3Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 4Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 5Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 7Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598
  • 9Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092
  • 10Bergeau F, Malt S. Match pursuit of images. In: Proceedings of the 1995 International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 53

共引文献63

同被引文献44

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部