期刊文献+

Ag-CuO钎料与BaCo_(0.7)Fe_(0.2)Nb_(0.1)O_(3-δ)透氧膜陶瓷润湿及界面反应机理的研究 被引量:3

The wetting and interface reaction mechanism of Ag-Cu-O brazes on BaCo_(0.7)Fe_(0.2)Nb_(0.1)O_(3-δ) oxygen-permeable membrane ceramic
下载PDF
导出
摘要 利用座滴法润湿实验,借助SEM和EDS测试,研究了Ag-CuO钎料与BaCo0.7Fe0.2Nb0.1O3-δ透氧膜陶瓷润湿及界面反应机理。结果表明Ag-Cu-O/BCFNO间的润湿遵从界面反应润湿机制,随Cu含量增加和温度升高,润湿角快速减小。当Cu含量为3.3%(摩尔分数)时,在界面处BCFNO侧开始生成1层反应层,反应层的存在降低了固液界面能,使界面润湿性得到改善,相互冶金作用增强。反应层产生的原因是界面处发生了界面反应CuOx+BaCoFeNbO→Ba-Cu-O+Co-Cu-O,生成的复杂氧化物Ba-Cu-O、Co-Cu-O在BCFNO基体的晶粒边界上呈岛状分布。 The wetting and interface reaction mechanism of Ag-Cu-O brazes on BaCo0.7Fe0.2Nb0.1O3-δ(BCFNO) oxygen-permeable membrane ceramic were investigated by the sessile drop wetting experiment and SEM/EDS test.The results indicate that the wetting of Ag-Cu-O brazes on BCFNO follow the wetting mechanism of interface reaction,with the Cu content and temperature increased,wetting angle rapid decreased.When the content of Cu was 3.3mol%,in BCFNO side at the interface a layer of reactive layer was generated.The existence of reactive layer reduced the liquid-solid interfacial energies,then improved the wettability of interface and enhanced the mutual metallurgy effect.Reactive layer are caused by the interface reaction(CuOx+BaCoFeNbO→Ba-Cu-O + Co-Cu-O) occurs in the interface.The complex oxide Ba-Cu-O,Co-Cu-O in the grain boundary of BCFNO matrix show island shape distributed.
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第1期77-80,共4页 Journal of Functional Materials
基金 国家高技术研究发展计划(863计划)资助项目(2006AA11A189) 上海市自然科学基金资助项目(11ZR1412900) 上海市科学技术委员会重点资助项目(07DZ12036)
关键词 Ag-Cu-O钎料 BCFNO 空气钎焊 润湿性能 界面反应 机理 Ag-Cu-O braze BCFNO air brazing wettability interface reaction mechanism
  • 相关文献

参考文献15

二级参考文献84

  • 1王立新,苏峻峰,任丽.相变储热微胶囊的研制[J].高分子材料科学与工程,2005,21(1):276-279. 被引量:48
  • 2刘杏芹,孟广耀.ZrO_2-Tb_2O_(3.5)-Y_2O_3氧化物体系的混合导电性和氧渗透[J].中国科学技术大学学报,1994,24(3):317-323. 被引量:2
  • 3刘杏芹 孟广辉 等.-[J].中国科技大学学报,1994,24:317-323.
  • 4张华民.-[J].无机材料学报,1993,8:473-478.
  • 5张华 陶顺衍 金江 等.一种新型的混合导电性透氧膜材料[J].功能材料,1998,29:1047-1049.
  • 6Bouwmeester H J M, Burgraaf A J. Fundamentals of Inorganic Membrane Science and Technology [M].New York: Elsevier, 1996.
  • 7Tan X Y, Li K, Thursfield A, et al. Oxyfuel combustion using a catalytic ceramic membrane reactor [J]. Catalysis Today, 2008, 131(1-4): 292-304.
  • 8Zhu X F, Cong Y, Yang W S. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δ membranes[J]. Journal of Membrane Science, 2006, 283 (1-2): 38-44.
  • 9Ge L, Zhou W, Ran R, et al. Properties and performance of A-site deficient (Ba0.5Sr0.5)1-xCo0.2Fe0.2O3-δ for oxygen permeating membrane [J]. Journal of Membrane Science, 2007, 306 (1/2): 318-328.
  • 10Fan C G, Liu W, Deng Z Q, et al. Mechanical stability and transport properties of the Sn-promoted SrCo0.8Fe0.2O3-δ ceramic membrane [J]. Journal of Membrane Science, 2007, 290 (1-2): 73-77.

共引文献111

同被引文献27

  • 1Sunarso J, Baumann S, Serra J M, et al. Mixed ion ic electronic conducting ( MIEC ) ceramic-based mem branes for oxygen separation [J]. J Membr Sci, 2008, 320(1-2) :13-41.
  • 2Dabbarh S, Pfaff E, Ziombra A, et al. Brazing of MIEC ceramics to high temperature metals [J]. Ceramic Trans- actions, 2010, 215:213-223.
  • 3Hardy J S, Kim J Y, Weil K S. Joining mixed conducting oxides using an air-fired electrically conductive braze[J]. J Electrochem Soc, 2004, 151(8): 43-49.
  • 4Fergus J W. Sealants for solid oxide fuel cells [J]. Jour- nal of Power Sources, 2005, 147(1-2): 46-57.
  • 5Kim J H, Yoo Y C. Bonding of alumina to melals with Ag-Cu-Zr brazing alloy [J]. J Mater Sei Lett, 1997, 16 (14) : 1212-1215.
  • 6Arroyave R, Eagar T W. Metal substrate effects on the thermochemistry of active brazing interfaces[J]. Aeta Mater, 2003, 51(16):4871-4880.
  • 7Zhu M, Chung D D L. Active brazing alloy containing carbon fibers for metal ceramic joining [J]. J Am Ceram Soc, 1994, 77(1):2712 - 2720.
  • 8Rice J P, Paxton D M, Weil K S. Oxidation behavior of a commercial gold-based braze alloy for ceramic-to-metal joining [C]. Westerville OH: Proceedings of the 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures, American Ceramic Society, 2008. 809-816.
  • 9Well K S, Kim J Y, Hardy J S. lnterfacial analysis of (La0.6Sr0.4) (Co0.2Fe0.8)03 e substrates wetted by Ag- CuO [J]. J Mater Sci, 2005, 40 (9-10) :2341-2348.
  • 10Weil K S, Coyle C A, Hardy J S, et al. Alternative pla- nar SOFC sealing concepts [J]. Fuel Cells Bulletin, 2004, 5:11-16.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部