摘要
研究带有吸附项的边界扩散退化抛物方程u/t=div(dα︱▽u︱p-2▽u)-uq,(x,t)∈QT=Ω×(0,T),其中:ΩRN是一个边界适当光滑的有界区域;d(x)=dist(x,Ω).验证了当α≥p-1时,该方程存在只与初值条件有关的解,而且是唯一的;当0<α<p-1时,方程存在与初值条件及边界条件有关的唯一解.
The boundary degenerate parabolic equation with adsorption item Эu/Эt=dix(d^a|u|^p-2u)-u^q,(x,t)∈Qr=Ω×(0,T) was studied, where OCRN was a bounded domain with appropriately smooth boundary OO,d(x) = dist(x, OO) , and it was proved that if a≥ p - 1 , the equation was admitted a unique solution subject only to a given initial datum without any boundary value condition. While if 0 〈 a 〈 p - 1 , for a given initial datum, the equation admitted different solutions for different boundary value conditions.
出处
《集美大学学报(自然科学版)》
CAS
2012年第1期71-74,共4页
Journal of Jimei University:Natural Science
基金
福建省自然科学基金资助项目(2009J01009)
集美大学潘金龙科研基金资助项目(C510071)
关键词
边界退化
扩散方程
存在性
唯一性
boundary degeneracy
diffusion equation
existence
uniqueness