期刊文献+

面向匹配决策问题的漏整合神经元稀疏ESN网络 被引量:1

Sparse ESN with a leaky integrator for matching decision-making problems
原文传递
导出
摘要 为了对匹配决策问题进行建模与预测,提出了一种具有更多神经生理学特征的稀疏回声状态网络(ESN),并基于在线监督学习方法对网络进行训练.为了评估网络的匹配决策性能,设计了三组测试数据集对网络性能进行测试,并提出了一种基于网络期望输出与实际输出序列最大相关系数的评价方法.仿真结果表明,新模型只需要较少的训练时间即可获得较好的决策性能,且对发放时间间隔、平移和网络噪声具有较好的鲁棒性. A new sparse echo state network (ESN) with a leaky integrator, which is expected to has more neurophysiology characteristics, was proposed and trained using the online supervised learning method so as to make the modeling and prediction of the matching decision-making problem. To evaluate the matching decision-making performance of the network, three kinds of test datasets were set up and an estimation method based on the maximum correlation coefficient for the actual output and the desired one was present. Simulation experimental resuhs show that the proposed model can achieve a better decision-making performance with a less training time. Meanwhile the model has a better robustness on spiking interval change, shifting, and network noise.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第1期6-11,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(90820305 60775040 60621062 61005085) 中国科学院自动化研究所模式识别国家重点实验室开放合作基金项目
关键词 回声状态网络(ESN) 递归神经网络 决策 匹配 神经元 echo state network (ESN) recurrent neural networks decision making matching neurons
  • 相关文献

参考文献11

  • 1Caporale N, Yang D. Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci, 2008, 31 ( 1 ) : 25.
  • 2Wills T J, Lever C, Cacucci F, et al. Attractor dynamics in the hippocampal representation of the local environment. Science, 2005, 308(5723): 873.
  • 3Jaeger H. Adaptive nonlinear system identification with echo state networks// Proceeding of Neural Information Processing Systems (NIPS). Vancouver, 2002:593.
  • 4Jaeger H, Lukosevicius M, Popovici D, et al. Optimization and applications of echo state networks with leaky-integrator neurons. Neural Networks, 2007, 20 (3) : 335.
  • 5Deng Z D, Zhang Y. Collective behavior of a small-world recurrent neural system with scale-free distribution. IEEE Trans Neural Net- works, 2007, 18(5): 1364.
  • 6Lukosevicius M, Jaeger H. Reservoir computing approaches to re- current neural network training. Comput Sci Rev, 2009, 3 (3) : 127.
  • 7LiY B, Song Y, Rong X W. A method for controlling chaos with echo state network // Proceeding of Intelligent Control and Auto- mation (WCICA). Jinan, 2010:60.
  • 8Skowronski D M, Harris G J. Noise-robust automatic speech rec- ognition using a predictive echo state network. IEEE Trans Audio Speech Lang Process, 2007, 15(5) : 1724.
  • 9Devert A, Bredeche N, Schoenauer M. Unsupervised learning of echo state networks:a case study in artificial embryogeny// Pro- ceedings of Artificial Evolution. Tours, 2007 : 278.
  • 10Smolinski T G, Prinz A A. Multi-objective evolutionary algo- rithms for model neuron parameter value selection matching bio- logical behavior under different simulation scenarios. BMC Neu- rosci, 2009, 10(Suppl 1) : 26.

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部