期刊文献+

Mallat小波快速变换与IDRNN在卫星实时故障检测与识别中的应用 被引量:2

Application of Mallat wavelet fast transforms and IDRNN in real-time fault detection and identification for satellites
原文传递
导出
摘要 系统研究了面向复杂系统监测时变信号的实时故障检测与识别问题.采用滑窗Mallat小波快速变换克服传统小波变换的时域全局依耐性并提高计算效率,使之适应于实时故障检测;针对时变信号的故障模式识别难题,在故障检测基础上采用改进动态循环神经网络(improved dynamic recurrent neural network,IDRNN)进行智能故障识别.最后将滑动时窗小波检测模块及最优IDRNN网络模块嵌入某型完整卫星姿态控制系统仿真平台进行在线故障诊断.试验结果表明:实时条件下的滑动窗口小波变换与传统小波变换具有一致性,IDRNN对于时变信号识别具有较好的时域泛化能力,将滑窗移动时不变小波方法与IDRNN结合可以实现面向复杂系统监测实时信号的故障检测及复合模式分类. A real-time fault detection and identification (FDI) scheme of time-variant signals for a complex system was studied. A sliding-window Mallat wavelet fast transform was first introduced to avoid depending on the signals in all periods for the classical wavelet transform, and the computing effect was improved, which makes sense that the real-time fault detection is effective. Secondly, aimed at the problem that it is difficult to identify the fault by using time-variant signals, an improved dynamic recurrent neural network (IDRNN) was utilized to identify the fault intelligently after detecting the fault. Finally, the scheme, including fault detection based on the sliding-window Mallat wavelet and fault isolation based on the optimized IDRNN, was applied into a satellite attitude control simulation platform to verify the online diagnosis result. Experimental results show that the sliding-window Mallat wavelet fast transform is consistent with the classical wavelet transform in real-time scenarios, IDRNN has a better generalization ability for identifying time-variant signals, and the scheme including the sliding-window Mallat wavelet and IDRNN can implement detecting the faults and classifying the multiple faults based on real-time monitoring signals for the complex system.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第1期90-95,共6页 Journal of University of Science and Technology Beijing
关键词 卫星 姿态控制 小波变换 神经网络 故障诊断 satellites attitude control wavelet transforms neural networks fault diagnosis
  • 相关文献

参考文献8

  • 1Jiang T, Khorasani K, Tafazoli S. Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite mod- els. IEEE Trans Control Syst Technol, 2008, 16(4) : 799.
  • 2Li L, Ma L, Khorasani K. A dynamic recurrent neural network fault diagnosis and isolation architecture for satellite's actuator/ thruster failures//Proceedings of lnternational Symposium on Neu- ral Networks. Berlin, 2005 : 574.
  • 3Talebi H A, Khorasani K, Tafazoli S. A recurrent neural-network- based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsys- tem. IEEE Trans Neural Networks, 2009, 20(1) : 45.
  • 4张恩东,黄文浩.基于小波变换和Kalman滤波的语音增强方法[J].模式识别与人工智能,2009,22(1):28-31. 被引量:4
  • 5姜连祥,李华旺,杨根庆,杨勤荣,黄海宇.航天器自主故障诊断技术研究进展[J].宇航学报,2009,30(4):1320-1326. 被引量:53
  • 6蒋睿,魏蛟龙,岑朝辉.基于四元数反馈的卫星姿态控制系统仿真模型建立[J].系统仿真学报,2009,21(19):6260-6265. 被引量:7
  • 7Ghen S, Su H, Zhang R, et al. Fusing remote sensing images using : trous wavelet transform and empirical mode decomposition. Pattern Recognit Lett, 2008, 29 (3) : 330.
  • 8Ayaz E, 0ztiirk A, Seker S, et al. Fauh detection based on con- tinuous wavelet transform and sensor fusion in electric motors. Int J Comput Math Electr Electron Eng, 2009, 28 (2) :454.

二级参考文献40

共引文献60

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部