期刊文献+

基于分布增益非线性光纤环镜的弱脉冲放大与压缩

Amplification and compression of weak optical pulses using gain-distributed nonlinear fiber loop mirror
下载PDF
导出
摘要 已有研究发现,用分布增益非线性光纤环镜放大和压缩超短光孤子不仅能避免常规掺铒光纤放大器中由于非线性效应引起的孤子畸变,而且可克服绝热放大技术放大器长度随输入脉宽增大而指数规律增大的困难。进一步计算了弱脉冲在分布增益非线性光纤环镜中的放大和压缩过程。结果表明,对于峰值功率比基阶孤子低得多的弱脉冲输入,用分布增益非线性光纤环镜同样可实现无畸变的脉冲能量放大和脉宽压缩;经环镜放大输出的脉冲也接近基阶孤子;输入脉冲峰值功率越低,实现最佳放大所需的环镜总增益越大,高阶效应对放大结果的影响越显著。 Recent works show that amplification and compression of ultrashort fundamental solitons in a gain-distributed nonlinear fiber loop mirror can not only avoid pulse distortion caused by nonlinear ef- fects such as self-phase modulation etc., but also overcome the difficulty of adiabatic amplification that the amplifier length must increase exponentially with the input pulse-width. Weak pulse amplification and compression in the gain-distributed nonlinear fiber loop mirror was investigated. Numerical results show that, as in the cases where the input pulses are fundamental solitons, distortion-free amplification and compression can also be realized when the input pulses have peak powers much lower than those of fundamental solitons, and that the amplified pulses are also close to fundamental solitons. The weaker the input pulse is the larger the optimum gain of the loop mirror should be, and the higher-order effects have larger influences on the amplified pulses.
出处 《量子电子学报》 CAS CSCD 北大核心 2012年第1期80-88,共9页 Chinese Journal of Quantum Electronics
基金 广东省自然科学基金(06029820)资助项目
关键词 非线性光学 光脉冲放大与压缩 数值计算 光孤子 分布增益 非线性光纤环镜 nonlinear optics optical pulse amplification and compression numerical simulation optical solitons distributed gain nonlinear fiber loop mirror
  • 相关文献

二级参考文献25

  • 1彭润伍,钱列加,范滇元.窄带和宽带双曲正割脉冲光束的解析传输式[J].中国激光,2005,32(5):637-641. 被引量:3
  • 2徐铭,吉建华,杨淑雯.色散控制孤子系统的设计方法研究[J].量子电子学报,2006,23(2):246-251. 被引量:1
  • 3邱娉,王青圃,张行愚,李永富.飞秒光参量放大技术原理及应用[J].量子电子学报,2007,24(3):273-282. 被引量:4
  • 4Mitschke F M, Mollenauer L F. Discovery of the soliton self-frequency shift [J]. Opt. Lett., 1986, 11(10): 659-661.
  • 5Chen J, Ilday F O, K~rtner F X. Soliton self-frequency shift from 1.03 μm to 1.55 μm [C]. OSA//ASSP, 2006: TUB9.
  • 6Lee J H, Howe J V, Xu C, et al. Soliton self-frequency shift: experimental demonstrations and applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 713-723.
  • 7Gordon J P. Theory of the soliton self-frequency shift [J]. Opt. Lett., 1986, 11(10): 662-664.
  • 8Agrawal G P. Nonlinear Fiber Optics [M]. Academic Press, 2001.
  • 9Tsoy E N, de Sterke C M. Dynamics of ultrashort pulses near zero dispersion wavelength [J]. J. Opt. Soc. Am. B, 2006, 23(11): 2425-2433.
  • 10Voronin A A, Zheltikov A M. Soliton self-frequency shift decelerated by self-steepening [J]. Opt. Lett., 2008, 33(15): 1723-1725.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部