期刊文献+

NaOH-NaAl(OH)_4-H_2O溶液体系渗透系数的测定及离子作用模型 被引量:3

Determination of Osmotic Coefficients and Representation with Ion-interaction Model for NaOH-NaAl(OH)_4-H_2O System at 303.15 K
下载PDF
导出
摘要 用等压法测定了在303.15 K时总碱质量摩尔浓度mNaOH(T)[mNaOH+mNaAl(OH)4]从0.61 mol/kg到5.72mol/kg,苛性比αK[mNaOH(T)/mNaAl(OH)4]从1.98到7.04的NaOH-NaAl(OH)4-H2O溶液体系的等压平衡浓度和渗透系数,并得到该溶液体系的水活度.用Pitzer模型对实验结果进行了参数化研究,拟合求得了离子相互作用参数.用Pitzer模型计算的渗透系数值与实验结果一致.用获得的参数计算了NaOH和NaAl(OH)4在NaOH-NaAl(OH)4-H2O溶液体系中的活度系数,其值随总碱质量摩尔浓度的增加呈增加的趋势. The isopiestic equilibrium molalities and the osmotic coefficients for the NaOH-NaAl(OH)4-H2O system were measured using isopiestic method.At 303.15 K with the total alkli molality[mNaOH(T)=mNaOH+mNaAl(OH)4] from 0.61 mol/kg to 5.72 mol/kg and molar ratio of Na2O to Al2O3(αK)[mNaOH(T)/mNaAl(OH)4] from 1.98 to 7.04.The experimental data were represented by the Pitzer model.The Pitzer ion interaction parameters were evaluated from experimental data using multiple regression.The measured data of osmotic coefficients are in reasonable agreements with those calculated by the model.The activity coefficients of NaOH and NaAl(OH)4 in the system were calculated from the ion interaction model parameterized,and the values increased with the total alkli molality increasing.These studies are useful to improve the thermodynamic model for sodium aluminate solutions systems and sodium aluminosilicate solutions systems.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第1期114-118,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20873182)资助
关键词 NaOH-NaAl(OH)4-H2O体系 等压法 等压平衡浓度 渗透系数 PITZER模型 NaOH-NaAl(OH)4-H2O system Isopiestic method Isopiestic equilibrium molality Osmotic coefficient Pitzer model
  • 相关文献

参考文献17

  • 1YANG Zhong-Yu(杨重愈). Industrial Technology of Aluminum Oxide(氧化铝生产工艺学)[M], Beijing: Metallurgy Industry Press, 1993: 135.
  • 2TIEJun(铁军) WANGYan-Ming(王延明) LIANGChun-Yu(梁春餘) CUIXue-Hai(崔学海).有色金属,1992,.
  • 3Bertenyi I., Tomcsanyi L.. Analytical Chemistry Symposia Series[J], 1981, 8: 185-189.
  • 4陈念贻,柳妙修,周佩芳.铝酸钠溶液中NaOH活度的测定[J].轻金属,1993(2):22-23. 被引量:3
  • 5Park H., Englezos P.. Fluid Phase Equilibria[J], 1999, 155: 251-259.
  • 6Zhou J., Chen Q. Y., Li J., Yin Z. L., Zhou X., Zhang P. M.. Geochimica et Cosmochimica Acta[J], 2003, 67(18): 3459-3472.
  • 7Rard J. A., Archer DG.. J. Chem. Eng. Data[J]..1995, 40:170-185.
  • 8Zhou J., Chen Q. Y., Zhou Y., Yin Z. L.. J. Chem. Thermodyn.[J], 2003, 35: 1939-1963.
  • 9Clarke E. C. W., Glew D. N.. J. Phys. Chem. Ref. Data[J], 1985, 14: 489-610.
  • 10Pabalan R. T., Pitzer K. S.. Geochimica et Cosmochimica Acta[J], 1987, 51: 829-837.

二级参考文献15

  • 1马淑花,郭奋,陈建峰.氢氧化铝的化学改性研究[J].北京化工大学学报(自然科学版),2004,31(4):19-22. 被引量:10
  • 2Moolenaar R.J.,Evans J.C.,McKeever L.D..J.Phys.Chem.[J],1970,74:3629-3636.
  • 3Radnai T.,May P.M.,Hefter G.T.,Sipos P..J.Phys.Chem.A[J],1998,(102):7841-7845.
  • 4Sipos P..J.Mol.Liq.[J],2009,146:1-14.
  • 5YANG Zhong-Yu(杨重愚).Technology on Production of Aluminium Oxide(氧化铝生产工艺学)[M],Beijing:Metallurgical Industry Press,1993:39-46.
  • 6Diakonov I.,Pokrovski G.,Schott J.,Castet S.,Gout R..Geochim.Cosmochim.Acta[J],1996,60(2):197-211.
  • 7Barcza L.,Plfalvi-Rzsahegyi M..Mater Chem.Phys.[J],1989,21(4):345-356.
  • 8Anich I.,Bagshaw T.,Margolis N.,Skillingberg M..Light Met.[J],2002,193-198.
  • 9JIA Meng-Qiu(贾梦秋).Applied Electrochemistry(应用电化学)[M],Beijing:Higher Education Press,2004:17-22.
  • 10CAI Bing-Xin(蔡炳新).Fundamental Physical Chemistry(基础物理化学)[M],Beijing:Science Press,2001:331-333.

共引文献15

同被引文献31

  • 1张爱云,姚燕,宋彭生.298.15K下Li_2B_4O_7-H_2O体系水蒸汽分压及渗透系数的等压测定和离子相互作用模型[J].高等学校化学学报,2004,25(10):1934-1936. 被引量:8
  • 2杨吉民,姚燕,张爱云,宋彭生.LiCl-Li_2B_4O_7-H_2O体系在298·15 K下热力学性质的等压研究[J].高等学校化学学报,2006,27(4):735-738. 被引量:8
  • 3CLEGGSL,SEINFELDJH,EDNEYEO.Thermodynamicmodellingofaqueousaerosolscontainingelectrolytesanddissolveorganiccompounds.Ⅱ.AnextendedZdanovskii-Stokes-Robinsonapproach[J].JAerosolSci,2003,34(6):667-690.
  • 4KOBYLINP,SIPPOLAH,TASKINENP.ThermodynamicmodelforacidicNi(Ⅱ)sulfatefromsolubilitydata[J].Calphad,2013,40:41-47.
  • 5LIUH,PAPANGELAKISVG.SolubilityofPb(Ⅱ)andNi(Ⅱ)inmixedsulfate-chloridesolutionswiththemixedsolventelectrolytemodel[J].IndEngChemRes,2006,45(1):39-47.
  • 6WETMOREFEW,GORDONA.Theactivitycoefficientofcoppersulphateinaqueoussolution[J].JChemPhys,1936,5(1):60-63.
  • 7ROBINSONRA,JONESRS.Theactivitycoefficientsofsomebivalentmetalsulfatesinaqueoussolutionfromvaporpressuremeasurements[J].JAmChemSoc,1936,58(6):959-961.
  • 8RANDALLM,WHITEAM.Theactivitycoefficientofelectrolytesfromthevaporpressureofthesolvent[J].JAmChemSoc,1926,48(10):2514-2517.
  • 9BROWNP,PRUEJ.Astudyofionicassociationinaqueoussolutionsofbi-bivalentelectrolytesbyfreezing-pointmeasurements[J].ProcRoyalSocLondon.SerA.MathPhysSci,1955,232(1190):320-336.
  • 10DOWNESCJ,PITZERKS.Thermodynamicsofelectrolytes.BinarymixturesformedfromaqueousNaCl,Na2SO4,CuCl2,andCuSO4,at25℃[J].JSolutChem,1976,5(6):389-398.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部