期刊文献+

无理式系统的主共振分岔分析

Bifurcations of resonance in an irrational system
下载PDF
导出
摘要 研究了一类无理式系统的主共振分岔。该系统为一连杆系统模型,其动力学行为取决于光滑参数α,当α>0时,其为正刚度系统;当α<0时,其为负刚度系统;当α=0时,其为线性系统。当α逐渐增加时,系统从弱非线性系统变成强非线性系统。研究结果表明,无理式系统的性质和多项式系统的性质是不同的。最后采用奇异性理论分析了共振解的演化过程。 Here,bifurcations of resonance in an irrational system were studied.The system was derived from a linkage mechanism and its dynamic behavior was dependent on the smooth parameter α.When α0,the nonlinear stiffness of the system was positive;when α0,it was negative;when α=0,the system is linear.When |α| increased gradually,the system changed from a weakly nonlinear system to a strongly nonlinear one.The study results showed that the properties of the irrational system are different from those of a polynomial system.Finally,the evolution process of the resonance solution to the system was studied by employing singularity theory.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第2期151-154,共4页 Journal of Vibration and Shock
基金 国家自然科学基金(10632040)
关键词 无理式系统 共振 分岔 irrational system resonance bifurcation
  • 相关文献

参考文献5

  • 1陈予恕.非线性振动系统的分岔和浑沌理论[M].北京:高等教育出版社,1993.
  • 2Cao Q, Wiercigroch M, Pavlovskaia E E, et al. An archetypal oscillator for smooth and discontinuousdynamics, Phys. Rev. E 74 (2006) 046218.
  • 3Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Piecewise linear approach to an archetypal oscillator forsmooth and discontinuous dynamics, Philos. Trans. R. Soc. A 366 ( 1865 ) (2008) 635 - 652.
  • 4曹庆杰,Wiercigroch M,Pavlovskaia E E,Grebogi C,Thompson M T.SD振子,SD吸引子及其应用[J].振动工程学报,2007,20(5):454-458. 被引量:9
  • 5Golubitsky M, Schaeffer D G. Singularities and groups in bifurcation theory [ M ]. New York , Berlin , Heidelberg , Tokyo : Springer-Verlag , 1984.

二级参考文献16

  • 1Filippov A F. Differential Equations with Discontinuous Right-Hand Sides[M]. Kluwer Academic Publishers, 1988.
  • 2Feigin M I. Forced Vibrations of Nonlinear Systems with Discontinuities [M]. Nauka: Moscow. In Russian, 1994.
  • 3Kunze M. Non-Smooth Dynamical Systems[M]. New York: Springer-Verlag, 2000.
  • 4Peterka F. Introduction to Vibration of Mechanical Systems with Internal Impacts [M]. Academia Publishing House: Prague. In Czech, 1981.
  • 5Shaw S W, Holmes P J. A periodically forced piecewise linear oscillator [J]. J. Sound and Vibration, 1983,90(1):129--155
  • 6Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator [J]. J. Sound Vib., 1991,145:279--297.
  • 7Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Archetypal oscillator for smooth and discontinuous dynamics[J]. Phys. Rev., 2006, E74, 046218.
  • 8Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics[J]. Phil.Trans. R. Soc. A:Doi:10. 1098/rsta. 2007. 2115, 2007.
  • 9Thompson J M T, Hunt G W. A General Theory of Elastic Stability[M]. London:John Wiley & Sons, 1973.
  • 10Guckenheimer J, Holmes P. Nonlinear Oscillation. Dynamica System and Bifurcation of Vector Fields [M]. New York: Spinger-Verlag, 1983.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部