期刊文献+

基于代理函数优化的稀疏性字典学习 被引量:4

Sparse Dictionary Learning Based on Optimization of Surrogate Function
下载PDF
导出
摘要 稀疏性字典学习是指对在某个已知的基字典上具有稀疏表示的字典的学习.论文利用块松弛思想,将稀疏性字典学习问题转化为字典和系数的分别优化问题,利用代理函数优化方法分别对固定字典和固定系数情况下的目标函数进行优化处理,得到固定字典情况下的系数更新算法和固定系数情况下的字典更新算法,进而得到稀疏性字典学习算法.理论分析说明了本文算法的收敛性.仿真对比表明了本文算法在收敛性和运算效率方面均优于稀疏性K-SVD算法. Sparse dictionary learning means that learning for a dictionary which has sparse representation on a known base dictionary.In the paper,with block-relaxation,the sparse dictionary learning can be translated into respective optimization of dictionary and coefficients.It means that the target function can be optimized respectively with fixed dictionary or fixed coefficients by optimization method of surrogate function.Through above process,the update algorithm of coefficients with fixed dictionary and update algorithm of dictionary with fixed coefficients can be obtained.Then the sparse dictionary learning algorithm is obtained.The convergence of the algorithm is illuminated theoretically.Comparison in simulation indicates that the algorithm put forward in this paper is superior to sparse K-SVD algorithm in convergence and operating efficiency.
作者 高磊 陈曾平
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第12期2910-2913,共4页 Acta Electronica Sinica
关键词 稀疏表示 稀疏性字典 块松弛 代理函数 K-SVD sparse representation sparse dictionary block-relaxation surrogate function K-SVD
  • 相关文献

参考文献11

  • 1蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350. 被引量:48
  • 2M Aharon, M Elad, A M Bruckstein. The K-SVD: An algo- rithm for designing of overcomplete dictionaries for sparse rep- resentation[ J]. IEEE Transactions, 2006,54( 11 ) : 4311 - 4322.
  • 3M Yaghoobi, T Blumensath, M E Davies. Dictionary learning for sparse approximations with the majorization method [J].IEF.F. Transactions, 2009,57(6) :2178 - 2191.
  • 4K Skretting, K Engan. Recursive least squares dictionary learn- ing algorithm [J]. IEEE Transactions, 2010, 58 ( 4 ) : 2121 - 2130.
  • 5B V Gowreesunker, A H Tewfik. Learning sparse representation using iterative subspace identification[J]. IEEE Transactions, 2010,58(6) :3055 - 3065.
  • 6N Dobigeon, J Y Tourneret. Bayesian orthogonal component analysis for sparse representation[ J ]. IEEE Transactions, 2010, 58(5) :2675 - 2685. R.
  • 7Rubinstein, M Zibulevsky, M Elad. Double sparsity: leaming sparse dictionaries for sparse signal approximation [ J ]. IEEE Transactions, 2010,58 (3) : 1553 - 1564.
  • 8S Cotter, B Rao, K Engan, K K Delgado. Sparse solutions to linear inverse problems with multiple measurement vectors[ J ]. IEEE Transactions, 2005,53(7 ) :2477 - 2488.
  • 9I Daubechies, M Defrise, C D Mol. An iterafive thresholding algorithm for linear inverse problems with a sparsity constraint [J].Comm Pure Appl Math, 2004,57( 11 ) : 1413 - 1441.
  • 10A Rantzer. On the dual of Lyapunov' s second theorem[ A]. Proceedings of the American Control Conference[ C ]. Chica- go, America: AACC, 2000.1186 - 1189.

二级参考文献7

  • 1杨晓慧,焦李成,李伟.基于第二代bandelets的图像去噪[J].电子学报,2006,34(11):2063-2067. 被引量:14
  • 2D L Donoho. De-noising by soft thresholding[J]. IEEE Trans on Information Theory, 1995,41 (3) : 613 - 627.
  • 3J Portilla, V Strela, et al. Image de-noising using scale mixtures of Gaussians in the wavelet domain[ J]. IEEE Trans on Image Processing, 2003,12(11) : 1338 - 1351.
  • 4M Elad, M Aharon. Image denoising via sparse and redundant representation over learned dictionaries[J]. IEEE Trans on Image Processing, 2006,15 (12) : 3736 - 3745.
  • 5S G Mallat, Z Zhang. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41 (12) :3397 - 3415.
  • 6J Nocedal, S J Wright. Numerical Optimization[M ]. New York: Springer Verlag,2006.
  • 7J Barzilai, J Borwein. Two-point step size gradient methods[J].IMA Journal of Numerical Analysis, 1988, 8 ( 1 ) : 141 - 148.

共引文献47

同被引文献21

  • 1Jian Yang,Lei Zhang,Yong Xu,Jing-yu Yang.Beyond sparsity: The role of L 1 -optimizer in pattern classification[J].Pattern Recognition.2011(3)
  • 2J W Ma, M Y Hussaini.Extensions of compressed imaging:flying sensor, coded mask, and fast decoding[J].IEEE Transactions on Instrumention and Measurement, 2011, 60(9): 3128-3139.
  • 3J W Ma.Compressed sensing by iterative thresholding of geometric wavelets:A comparing study[J].International Journal of Wavelets Multiresolution and Information Processing, 2011, 9(1):63-77.
  • 4D L Donoho.Compressed sensing[J].IEEE Trans on Information Theory, 2006, 52(4):1289-1306.
  • 5J W Ma.Single-pixel remote sensing[J].IEEE Geoscience and Remote Sensing Letters, 2009, 6(2):199-203.
  • 6J W Ma, F-X L Dimet.Deblurring from highly incomplete measurements for remote sensing[J].IEEE Trans on Geosci.Remote Sens, 2009, 47(3):792-802.
  • 7J Ma.A single-pixel imaging system for remote sensing using two-step iterativecurvelet thresholding[J].IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):676-680.
  • 8Candes E J, Y C Eldar, D Needell, P Randall.Compressed sensing with coherent and redundant dictionaries[J].Applied and Computational Harmonic Analysis, 2011, 31(1):59-73.
  • 9陈树勇,宋书芳,李兰欣,沈杰.智能电网技术综述[J].电网技术,2009,33(8):1-7. 被引量:1126
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部