期刊文献+

求矩阵方程sum from i=1 to N(A_lX_lB_l=C)对称解的一个迭代算法

Iterative algorithm for solving symmetric solutions of matrix equation sum from i=1 to N(A_lX_lB_l=C)
下载PDF
导出
摘要 给出一个迭代算法求解线性矩阵方程sum from i=1 to N(A_lX_lB_l=C)的对称解X1,X2,…,XN,利用这个迭代算法可以判断这个方程是否有对称解。当矩阵方程相容时,可以通过有限步迭代之后得到它的对称解;当选择特定的初始值时,迭代之后得到的是其极小范数对称解;此外,通过求新线性矩阵方程的极小范数对称解能够得到给定矩阵的最优逼近解。最后给出了一个数值例子来验证结论。 A finite iterative algorithm was proposed to solve for the symmetric solutions(X1,X2,…,XN) of the matrix equations sum from i=1 to N(A_lX_lB_l=C).If the matrix equation is consistent,the symmetric solutions could be obtained within finite iterative steps and its least-norm symmetric solution could be reached by choosing a special kind of initial iterative matrix.Furthermore,its optimal approximation solution to a given matrix can be derived by computing the least-norm symmetric solution of a new matrix equation.Finally,a numerical example was illustrated to verify the theoretical results.
作者 汪祥 吴武华
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2011年第6期511-520,共10页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11101204) 江西省自然科学基金资助项目(2007GQS2063) 江西省教育厅青年科学基金资助项目(GJJ09450)
关键词 矩阵方程 迭代算法 对称解 极小范数对称解 matrix equations iterative algorithm symmetric solutions least-norm symmetric solutions
  • 相关文献

参考文献10

  • 1程云鹏,张凯院,徐仲,矩阵轮[M].3版.西安:西北工业大学出版社,2006.
  • 2DAI Hua. On the Symmetric Solutions ol Linear Matrix Equations[J]. Linear Algebra Appl, 1990,131:1-7.
  • 3ERIC Chu KING-wah. Symmetric Solutions of Linear Matrix Equations by Matrix Decompositions[J]. Linear Algebra Appl, 1989,119 .. 35-50.
  • 4HENK Don F J. On the Symmetric Solutions of a Linear Matrix Equation[J]. Linear Algebra Appl, 1988,93.1-7.
  • 5MAGNUS J R. L-structured Matrices and Linear Matrix Equation[J]. Linear and Multilinear Algebra Appl, 1983,14:67 88.
  • 6MORRIS G R,ODELL P L. Common Solutions for n Matrix Equation with Applications[J]. J Assoc Comput Mach, 1968, 15:272-274.
  • 7BJERHAMMER A. Rectangular Reciprocal Matrices with Special Refrence to Geodetic Calculations [J]. Kung Tekn Hogsk Handl Stockholm, 1951,45 .. 1-86.
  • 8PENG Ya-Xin, HU Xi-Yan,LEI Zhang. An Iteration Method for the Symmetric Solutions and the Optimal Approximation Solution of the Matrix Equation A )< B = C[J]. Applied Mathematics and Computation, 2005,160 : 763-777.
  • 9HUANG Guang-Xin,YIN Feng,GUO Ke. An Iterative Method for the Skew-Symmetric Solution and the Optimal Ap proximate Solution of the Matrix Equation A X B= C[J-]. Journal of Computational and Applied Mathematics, 2008,212: 231-244.
  • 10SHENG X,CHEN G. An Iterative Method for the Symmetric and Skew Symmetric Solution of a Linear Matrix Equation A ~ B + CYD= E[J]. Journal of Computational and Applied Mathematics, 2009 (11 ) : 52 - 60.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部