期刊文献+

压电陶瓷执行器的动态模型辨识与控制 被引量:39

Identification and control of dynamic modeling for piezoceramic actuator
下载PDF
导出
摘要 为了提高精密定位系统中压电陶瓷的控制精度,研究了压电执行器的动态模型及逆模型。根据Weierstrass第一逼近定理,提出了以多项式函数逼近Duhem模型中的分段连续函数f(·)和g(·),并应用递推最小二乘算法辨识Du-hem模型的参数α及f(·)和g(·)的多项式系数,建立了压电陶瓷执行器的非线性参数化动态模型。利用辨识结果建立压电陶瓷执行器的动态逆模型,避免对压电陶瓷执行器进行复杂的模型求逆;介绍了通过逆补偿和PID复合控制对压电陶瓷系统进行的控制。实验结果表明:仅通过逆补偿,可在0~200μm使得控制绝对误差小于0.8μm;在前馈逆补偿和PID环控制下,绝对误差可小于40nm,结果验证了算法的有效性。该算法结构简单,适应性强,便于工程实现。 The dynamic model and inverse model of a piezoceramic actuator were proposed to improve its control precision in a precision position system. According to the Weierstrass approximation theorem, the polynomials f(·) and g(·) in the Duhem function was developed, and the dynamic modeling of nonlinear parameters of the piezoceramic actuator was given by using recursive least squares to identify the model parameters and polynomial coefficients in the Duhem model. Then, an inverse dynamic modeling of the piezoceramic actuator was established based on identified results to simplify the unknown parameter computation process greatly. Finally, the dynamic inverse compensation was incorporated in a closed-loop PID controller to control the piezoceramic actuator. Experimental results indicate that the maximum absolute error with the inverse compensation is less than 0.8 μm and that with the inverse compensation and PID is less than 40 nm in an amplitude range of 200 μm. The experimental result shows that the proposed identification scheme has improved the nonlinear characteristic of the piezoceramic actuator effectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第1期88-95,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60971004) 上海市科委重点基金资助项目 (No.09220503000 10JC1412200) 上海市自然科学基金资助项目(No.09ZR1423400) 上海市教育委员会科研创新基金资助项目(No.09ZZ141 11YZ92) 上海师范大学重点学科基金资助项目(No.DZL811 DRL904)
关键词 压电陶瓷执行器 Duhem模型 Weierstrass多项式逼近 递推最小二乘法 动态迟滞模型 动态逆迟滞模型 逆补偿 piezoceramic actuator Duhem model Weierstrass polynomial approximation recursive least square dynamic hysteresis model dynamic inverse model inverse compensation
  • 相关文献

参考文献24

  • 1BANKS H T, SMITH R C. Hysteresis modeling in smart material systems[J].Appl. Mech. Eng., 2000(5) :31-45.
  • 2TAN X, BARAS J S. Modeling and control of hysteresis in magnetostrictive actuators[J]. Automati- ca, 2004,40(9) :1469-1480.
  • 3MAYEYERGOYZ I D. Mathematical model of hysteresis [J]. IEEE Transa. on Magnet. , 1986,22 (5) :603-608.
  • 4刘向东,刘宇,李黎.一种新广义Preisach迟滞模型及其神经网络辨识[J].北京理工大学学报,2007,27(2):135-138. 被引量:2
  • 5JILES D, LATHERTON D. Ferromagnteic hyster esis[J]. IEEE Trans. Magnet. , 1983, 19 (5) 2183-2185.
  • 6GOLDFARB M, CELANOVIC N. A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators[J]. ASME J. Dynamic Syst. Measure. Control, 1997,119 (3): 479-485.
  • 7WEN Y K. Method for random vibration of hyster eric system[J]. ASCE J. Eng. Mech., 1976,120:2299-2325.
  • 8ANG W T, GARM'ON F A. Modeling rate-de- pendent hysteresis in piezoelectric actuators[C]. Proceedings of the 2003 IEEE/RSJ Intl. Con- f ernece on Intelligent Robots and Systems, Las Vegas, NV, October, 2003.
  • 9DONG R, TAN Y, CHEN H, et al.. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators [J]. Sensors and Actua- tors A:Physical, 2008,143(2) :370-376.
  • 10DONG R, TAN Y. Modeling hysteresis in piezoce- ramic actuators using modified Prandtl-Ishlinskii mod- el[J].Physica B, 2009,404(8-11) :1336-1342.

二级参考文献56

共引文献128

同被引文献246

引证文献39

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部