期刊文献+

增殖燃烧一体化快堆插花式堆芯布置与倒料方案研究

Study on Scattered Core Layout and Shuffling Strategies of Breeding-burning Integrated Fast Reactor
下载PDF
导出
摘要 增殖燃烧一体化快堆利用常规快堆的增殖特性,在堆芯内同时布置燃烧组件和增殖组件。堆芯功率主要在燃烧组件内产生,而在燃烧组件周围的贫铀组件中^238U转化为^239Pu等易裂变核素。通过定期倒料,堆芯在一次装料后可以实现长期自持临界,从而维持几十年的稳定运行。这需要通过合理的堆芯布置与倒料方案来平衡燃料的燃烧和增殖过程。插花式的堆芯布置与倒料方案是将一部分增殖组件分散布置在堆芯高通量区,保证了增殖组件的快速增殖,同时可以保持堆芯在整个反应堆寿期内具有稳定的功率分布。另外插花式堆芯布置与倒料方案最终的组件卸料燃耗是相对均衡的,所有从燃烧区倒出的组件都具有相近的燃耗,一般在250~300GWd/t左右。这使得增殖燃烧一体化快堆可以在不进行燃料后处理的条件下,实现铀资源的高效利用。 The Breeding-burning integrated fast reactor uses burning assemblies to generate thermal power; meanwhile, converts 238U into 239Pu in the fertile assemblies. With periodical shuffling of tssemblies, the reactor can maintain criticality for decades of years. To maintain long-term stability of the :ore reactivity, the core layout and sh Lssemblies. The scattered core layout uffling strategy should balance the burning and the Breeding of the and shuffling strategies ensure a fast breeding of the fertile assem- Jlies, and keep a stable core power distribution in the whole life of the reactor. Moreover, at the end of the reactor life, the discharge burnup of different fuel assemblies are close to each other, which is 300 GWd/t or so. This is important for Breeding-burning integrated fast reactor to achieve very efficient utilization of tranium resources without reprocessing.
出处 《核电工程与技术》 2011年第4期5-12,共8页 Nuclear Power Engineering and Technology
关键词 增殖燃烧一体化 插花式堆芯布置 倒料方案 breeding-burning integration, scattered core layout, shuffling strategy
  • 相关文献

参考文献10

  • 1T. K. Kim, T. A. Taiwo. FEASIBILITY STUDY OF ULTRA-LONG LIFE FAST REACTOR CORE CONCEPT [C]. PHYSOR 2010. Pittsburgh, Pennsylvania, USA, May 9- 14, 2010.
  • 2Kevan D. Weaver et al. A Once-Through Fuel Cycle fo r Fast Reactors [C]. 17th International Conference on Nuclear Engineering. July 12-16, 2009, Brussels, Belgium.
  • 3John Gilleland et al. Novel Reactor Designs to Burn Non-Fissile Fuels [C]. Proceedings of ICAPP ~08. Anaheim, CA USA, June 8-12, 2008.
  • 4S.P. Fomin et al. Initiation and propagation of nuclear burning wave in fast reactor [J]. Progress in Nuclear Energy 50 (2008) 163-169.
  • 5TerraPower Nuclear Initiative. An Introduction [R] October, 2009.
  • 6V. M. Khotyayintsev. TRAVELLING WAVE REACTOR: VELOCITY FORMATION MECHANISMS [C]. PHYSOR 2010. Pittsburgh, Pennsylvania, USA, May 9-14, 2010.
  • 7Naoyuki Takaki, Hiroshi Sekimoto. Potential of CANDLE reactor on sustainable development and strengthened proliferation resistance [J]. Progress in Nuclear Energy 50 (2008) 114-118.
  • 8Hiroshi Sekimoto, Seiiehi Miyashita. Startup of "Candle" burnup in fast reactor from enriched uranium core [J]. Energy Conversion and Management 47 (2006) 2772-2780.
  • 9Mingyu Yan, Hiroshi Sekimoto. Study on small long-life LBE cooled fast reactor with CANDLE burn-up e Part I [J]: Steady state research. Progress in Nuclear Energy 50 (2005) 286-289.
  • 10Hiroshi Sekimoto, Akito Nagata. "CANDLE" burnup regime after LWR regime [J]. Progress in Nuclear Energy 50 (2008) 109-113.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部