期刊文献+

Al-0.6Mg-0.6Si铝合金MIG焊接接头显微组织与微区成分研究 被引量:6

Research on Microstructure and Micro-area Composition MIG Joint of Al-0.6Mg-0.6Si Aluminum Alloy
下载PDF
导出
摘要 对轨道车辆用新型Al-0.6Mg-0.6Si铝合金进行了熔化极隋性气体保护(MIG)焊接,利用光学金相(OM)、能谱(EDAX)分析等测试手段,对焊接接头的显微组织与微区成分(质量分数)进行了分析.结果表明:采用MIG焊接方法能够获得成形良好的接头,焊缝中心结晶形成典型铸态组织,但易于偏聚形成显微夹杂,靠近熔合线的焊缝逐渐由焊缝边缘的柱状晶过渡到枝状晶.熔合线附近的焊缝边缘易于形成Si偏析带,Al-0.6Mg-0.6Si基体组织的质量比m(Mg)∶m(Si)≈1.04∶1,焊缝中心Mg元素受电弧高温烧损,Mg含量(质量分数)为3.08%. The Al-0.6 Mg-0.6Si alloy used in the rail vehicle was welded by MIG welding. The micro- structure and micro-area compositions of the welding joint were analyzed and characterized by OM and EDAX methods. The results of the experiment show that a good appearance of the welding joint can be obtained by MIG. There are typical as-cast microstructures in the center area of welding seam. The micro-inclusions are easy to cluster in the welding seam. The columnar dendritic grains transform gradually into eguiaxial structure from near the fusion line to the welding seam center. The Si segragation zone are easy to form in the edge of welding seam near the fusion line. The mass ratio Mg/Si is about 1.04 in the matrix structure of Al-0.6Mg-0.6Si alloy. Because some Mg element was lost due to high arc temperature,the Mg content in the welding metal is 3.08%.
出处 《上海工程技术大学学报》 CAS 2011年第4期300-303,319,共5页 Journal of Shanghai University of Engineering Science
基金 国家自然科学基金资助项目(51075256) 上海市教委科研创新重点资助项目(11ZZ177)
关键词 铝合金 MIG焊 显微组织 微区成分 Al alloy MIG (Metal Inert Gas) welding microstructure micro-area composition
  • 相关文献

参考文献4

  • 1Yang S L,Lin Q L. Microstructures and properties of the A1-4.5Zn-1.5Mg-0.5Mn aluminum alloy welding metal [J ]. Advanced Materials Research, 2011,148 - 149:640 - 643.
  • 2田福泉,付高峰,周传良,姜澜.高速列车车厢用的铝合金板焊接接头的组织与性能[J].东北大学学报(自然科学版),2006,27(1):49-52. 被引量:13
  • 3Barsoum Z,Jonsson B. Influence of weld quality on the fatigue strength in seam welds [J]. Engineering Failure Analysis, 2011,18 (3) : 971 - 979.
  • 4Ambriz R R, Mesmacque G, Ruiz A, et al. Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061 - T6 aluminum alloy [J]. Materials Science and Engineering.. A,2010,527(7 - 8) ..2057 - 2064.

二级参考文献9

  • 1姚曙光,许平.高速磁浮列车车体国产化[J].交通运输工程学报,2004,4(2):40-44. 被引量:17
  • 2王元良,屈金山,晏传鹏,胡久富.铝合金焊接性能及焊接接头性能[J].中国有色金属学报,1997,7(1):69-74. 被引量:47
  • 3Olaf E. Welded structures of the railway vehicles, railway technology international[M]. New York: Pergamon Press,1992.111 - 120.
  • 4Gur C H, Yildiz I. Non-destructive investigation on the effect of precipitation hardening on impact toughness of 7020 Al-Zn-Mg alloy[J]. Materials Science and Engineering A,2004,382 : 395-400.
  • 5Kuo H C, Wu L J. Prediction of heat-affected zone using grey theory [J]. Journal of Materials Processing Technology, 2002,120:151 - 168.
  • 6Ferragut R, Somoza A, Tolley A. Precipitation kinetics in Al-Zn-Mg commercial alloys [J]. Journal of Materials Processing Technology, 2003,141(1):35 - 40.
  • 7Nicolas M, Deschamps A. Precipitate microstructures and resulting properties of Al-Zn-Mg metal inert gas-weld heat-affected zones [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004,35(5) : 1437 - 1448.
  • 8Ma T, Ouden G. Softening behaviour of Al-Zn-Mg alloys due to welding[J]. Materials Science and Engineering, 1999,266(1 - 2) : 198 - 204.
  • 9Lech G M, Richert M. Structural evolution in the ageing AlZn4.7Mg1. 2 alloy after control heat treatment and fatigue investigation[J]. Materials Science Forum, 2000,331 (2) :1561 - 1566.

共引文献12

同被引文献38

  • 1李瑞淳,王马矣.德国高速列车综述[J].国外铁道车辆,2005,42(6):1-6. 被引量:10
  • 2YANG S L, LIN Q L. Microstructures and properties of the AI-4.5Zn-I.5Mg-0.5Mn aluminum alloy welding metal[J]. Advanced Materials Research, 2011, 148/149: 640-643.
  • 3AMBRIZ R R, MESMACQUE C~ RUIZ A, AMROUCHE A, LOPEZ V H. Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminum alloy[J]. Materials Science and Engineering A, 2010, 527(7/8): 2057-2064.
  • 4TU J F, PALEOCRASSAS A G. Fatigue crack fusion in thin-sheet aluminum alloys AA7075-T6 using low-speed fiber laser welding[J]. Journal of Materials Processing Technology, 2011. 211(1): 95-102.
  • 5FENG A H, CHEN D L, MA Z Y. Microstructure and low-cycle fatigue of a friction-stir-welded 6061 aluminum alloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41(10): 2626-2641.
  • 6HE Z B, PENG Y Y, YIN Z M, LEI X F. Comparison of FSW and TIG welded joints in A1-Mg-Mn-Sc-Zr alloy plates[J]. Transactions Nonferrous Metals Society of China, 2011, 21: 1685-1691.
  • 7STEFANO M, CHIARA S. Corrosion resistance in FSW and in MIG welding techniques of AA6×××[J]. Journal of Materials Processing Technology, 2008, 197: 237-240.
  • 8SINGH R K, SHARMA C, DWIVEDI D K, MEHTA N K, KUMAR P. The mierostructure and mechanical properties of friction stir welded AI-Zn-Mg alloy in as welded and heat treated conditions[J]. Materials and Design, 2011, 32(2): 682-687.
  • 9WANG X J, ZHANG Z K, L1 J, DA C B. Plastic flow pattern and its effect in friction stir welding of A2024 and AI016[J]. Transactions of Nonferrous Metals Society of China, 2006, 16($3): s1336-s1341.
  • 10祝伟忠,王虎臣,王煜.A6N01-T5铝合金型材力学性能与停放时间的关系[J].轻合金加工技术,2007,35(9):27-29. 被引量:7

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部