期刊文献+

基于词条向量和情感分析的新闻广告匹配模型 被引量:1

Matching Model of News and Advertisements Based on Term Vectors and Sentiment Analysis
下载PDF
导出
摘要 在新闻网页上配置广告的算法通常以信息关联度为基础,没有考虑新闻和广告之间的情感差异,容易导致错误匹配.针对目前广告匹配算法的缺陷,在关键词生成、情感分析技术的基础上,引入情感差异分析,建立了一种新的支持在线新闻与广告内容、情感相匹配的模型.该模型对在线新闻网站和广告投放商实际应用具有重要的意义. Current algorithm of matching advertisements for online news, which is based on information correlation,neglecting sentiment distinctions between news and advertisements, is easy to produce mismatch. Aiming at the defect of matching algorithm, the sentiment distinction analysis was introduced, and a new model to support a better type of matching contents and sentiment between online news and adver-tisements was proposed based on mature techniques of keyword generation and the sentiment analysis. This model has an important significance of practical application for online news websites and advertisers.
作者 李鸿燕
出处 《上海工程技术大学学报》 CAS 2011年第4期366-369,共4页 Journal of Shanghai University of Engineering Science
关键词 词条向量 情感分析 概要 绝对位置分数 相对位置分数 情感差异分数 term vector sentiment analysis profile absolute position score relative position score sentiment distinction score
  • 相关文献

参考文献12

  • 1Kurtz A J,Mostafa J. Topic detection and interesttracking in a dynamic online news source[C] /// Pro- ceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries, Washington.. IEEE Computer Society,2003 : 122 - 124.
  • 2Allan J. Topic Detection and Tracking: Event-Based Information Organization [ M]. Dordrecht: Kluwer Academic Publishers, 2002.
  • 3JurafskyD,MartinJH.自然语言处理综述[M].冯志伟,孙乐,泽.北京:电子工业出版社,2005.
  • 4阴晋岭,王惠临.词性标注的方法研究——结合条件随机场和基于转换学习的方法进行词性标注[J].现代图书情报技术,2009(3):46-51. 被引量:4
  • 5Hulth A, Karlgren J, Jonsson A, et al. Automatic keyword extraction using domain knowledge[C]// Proceedings of the 2nd International Conference on Computational Linguistics and Intelligent Text Processing, London.. Springer-Verlag, 2001 472 - 482.
  • 6Matsuo Y, Ishizuka M. Keyword extraction from a single document using co-occurrence statistical information[J]. International Journal on Artificial Intelligence Tools, 2004,13 ( 1 ) : 157 - 169.
  • 7张虹.基于自动文本分类的关键词抽取算法[J].计算机工程,2009,35(12):145-147. 被引量:18
  • 8Nasukawa T, Yi J. Sentiment analysis: capturing favorability using natural language processing[C]// Proceedings of the 2nd International Conference on Knowledge Capture, New York: ACM Press, 2003: 70 - 77.
  • 9Hu M, Liu B. Mining and summarizing customer reviews [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York : ACM Press, 2004,.168- 177.
  • 10Popescu A M, Etzioni O. Extracting product fea- tures and opinions from reviews[C]///Proceedings of 2005 Conference on Empirical Methods in Natural Language Processing, New Jersey: Association for Computational Linguistics,2005:339 - 346.

二级参考文献40

  • 1鲁明羽.Bayes文本分类器的改进方法研究[J].计算机工程,2006,32(17):63-65. 被引量:11
  • 2Azcarraga A P. Evaluating Keyword Selection Methods for WEBSOM Text Archives[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(3): 266-268.
  • 3Hulth A. Improved Automatic Keyword Extraction Given More Linguistic Knowledge[C]//Proc. of EMNLP'03. Sapporo, Japan: [s. n.], 2003.
  • 4Daniel Jurafsky,James H.Martin.自然语言处理综述[M].冯志伟,孙乐译.北京:电子工业出版社,2005.
  • 5Lafferty J,McCallum A,Pereira F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C].In:Proceedings of the 18th International Conf on Machine Learning.San Francisco:AAAI Press,2001:282-289.
  • 6Sutton C,MeCallum A.An Introduction to Conditional Random Fields for Relational Learning[A]//se Getoor and Ben Taskar.Introduction to Statistical Relational Learning[M].Maryland,MIT Press,2006.
  • 7Hanna Wallach.Efficient Training of Conditional Random Fields[C].In:Proc.6th Annual CLUK Research Colloquium,2002.
  • 8Florian R,Ngai G.Fast Transformation-based Learning Toolkit[EB/OL].[2008-09-10].http://p.cs.jhu.edu/~ rflorian/fntbl/documentation.html.
  • 9Brill.Transformation-based Error-driven Learning and Natural Language Processing:A Case Study in part of Speech Tagging[J],Computational Linguistics,1995 (21):543-565.
  • 10肖忠华.兰开斯特汉语语料库[EB/OL].[2008-11-05].http://ling.cass.cn/dangdai/LCMC/LCMC.htm.

共引文献92

同被引文献12

  • 1Edelman B, Ostrovsky M, Schwarz M. lnternet Advertising and the Generalized Second Price Auction: Selling Billions of Dollars Worth of Keywords [ Z]. National Bureau of Economic Research,2005.
  • 2Lambrecht A,Tucker C. When Does Retargeting Work? Information Specificity in Online Advertising [J ] . Journal of Marketing Research, 2013,50 ( 5 ) : 561 -576.
  • 3Ciaramita M, Murdock V, Plachouras V. Online Learning from Click Data for Sponsored Search[ C ]//Proceedings of the 17th International Conference on World Wide Web. New York,USA:ACM Press,2008:227-236.
  • 4Ravi S, Broder A, Gabrilovich E, et al. Automatic Generation of Bid Phrases for Online Advertising[ C ]// Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press ,2010:341-350.
  • 5Lohtia R, Donthu N, Hershberger E K. The Impact of Content and Design Elements on Banner Advertising Click-through Rates [ J ]. Journal of Advertising Research,2003,43 (4) :410-418.
  • 6Nazerzadeh H, Saberi A, Vohra R. Dynamic Cost-per- action Mechanisms and Applications to Online Advertising [ C]//Proceedings of the 17th International Conference on World Wide Web. New York, USA: ACM Press, 2008:179-188.
  • 7Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters [J] .Communications of the ACM,2008,51(1) :107-113.
  • 8Chapelle O, Li L. An Empirical Evaluation of Thompson Sampling [ C ] //Proceedings of IEEE NIPS'II. Washington D. C. , USA : IEEE Press, 20 11 : 2249-2257.
  • 9周傲英,周敏奇,宫学庆.计算广告:以数据为核心的Web综合应用[J].计算机学报,2011,34(10):1805-1819. 被引量:59
  • 10宫学庆,王立,何晓丰.基于用户分组的广告定位(英文)[J].华东师范大学学报(自然科学版),2013(3):70-78. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部