期刊文献+

紧集上锥约束集值平衡问题解的存在性

The Existence of Solutions for Cone-constrainted Set-valued Equilibrium Problems on a Compact Set
下载PDF
导出
摘要 平衡问题理论在非线性分析、最优化以及数理经济学等方面都有广泛的应用.本文讨论的是更具意义的锥约束集值平衡问题,并通过集值Ekeland变分原理,证明了紧集上锥约束集值平衡问题解的存在性. There are extensive applications of the theory of equilibrium problems in nonlinear analysis,optimization,mathematical economics and etc.In this paper,a cone-constrained set-valued equilibrium problem with more general form is considered,and by using the Ekeland variational principle for set-valued mapping,the existence of solutions for cone-constrained set-valued equilibrium problems on a compact set is obtained.
作者 庞伟 冯瑜
出处 《玉林师范学院学报》 2011年第5期10-12,共3页 Journal of Yulin Normal University
基金 玉林师范学院青年科研资助项目(集值形式的Ekeland变分原理研究)
关键词 锥约束集值平衡问题 集值Ekeland变分原理 紧集 Cone-constrained set-valued equilibrium problems Ekeland variational principle for set-valued mapping compact set
  • 相关文献

参考文献7

  • 1J.P.Aubin. Optima and equilibria [M]. Springer-Verlag, Berlin, 1993.
  • 2K. Fan. A minimax inequality and its application[M]. Inequalities, Vol 3, Shisha Ed. Academic Press, New York, 1972: 103-113.
  • 3M.Bianchi, G.Kassay, R.Pini. Existence of equilibria via Ekeland principle[J]. J. Math. Anal. Appl, 2005, 305: 502-512.
  • 4Q. He, F. Yang. Variational conclusions of set-valued bifunctions of convex subsets of Banach spaces with applications[J]. J.Math.Anal.Appl, 2007, 333:1070 - 1078.
  • 5A.Kristaly, C.Varga. Set-valued versions of Ky Fan's inequality with application to variational inclusion theory[J]. J.Math.Anal.Appl, 2003, 282: 8-20.
  • 6庞伟,冯瑜.集值形式的Ekeland变分原理[J].玉林师范学院学报,2011,32(2):24-28. 被引量:1
  • 7Chr. Gerth (Tammer), P. Weidner. Nonconvex separation theorems and some applications in vector optimization[J]. J. Optim. Theory Appl. 1990, 67: 297-320.

二级参考文献14

  • 1I. Ekeland. On the variational principle[J]. J.Math.Anal.Appl, 1974, 47: 324-353.
  • 2A.Kristaly, C.Varga. Set-valued versions of Ky Fan' s inequality with application to variational inclusion theory[J]. J.Math.Anal. Appl, 2003, 282: 8-20.
  • 3G.Y. Chen, X.X. Huang. Ekeland's e variationalprinciplefor set-valued mappings[J]. Math. Methods Oper. Res. 1998, 48: 181-186.
  • 4Y.Q. lZeng, S.Y. Liu. Fixedpoint theorems for multivalued contractive mappings and multi-valued Caristi type mappings[J]. J. Math. Anal. Appl. 2006, 317: 103-112.
  • 5Chr. Gerth (Tammer), P. Weidner. Nonconvex separation theorems and some applications in vector optimization[J]. J. Optim. Theory Appl. 1990, 67: 297-320.
  • 6A. G/ipfert, Chr. Tammer, C. Zalinescu. On the vectorial Ekeland's variational principle and minimal points in product spaces[J]. Nonlinear Anal. 2000, 39: 909-922.
  • 7M.Bianchi, G.Kassay, R.Pini. Existence of equilibria via Ekelandprinciple[J]. J.Math.Anal.Appl, 2005, 305: 502-512.
  • 8J.P.Aubin, H.IZrankowska. Set-valued analysis[M]. Birkhauser, Boston, 1900.
  • 9T.D. Luc. Theory of vector optimization, lecture notes in econom, and math. systems[M], vol.319, Springer-Verlag, Berlin, 1989.
  • 10F.Ferro. An optimization sesult for set-valued mapping and a stability property in vector prob-lems with constraints[J]. J.Opti. Theo. Appl. 1996, 90: 63-77.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部