期刊文献+

Ar射频放电特性随时间演化的PIC/MCC模拟 被引量:1

PIC/MCC simulation of RF-discharge plasma
原文传递
导出
摘要 采用等离子体粒子模拟方法(PIC/MCC)方法对一维模型模拟了容性耦合等离子体(CCP)源放电过程中等离子体的动力学行为。在模拟氩气放电的过程中,综合考虑了电子与Ar之间的弹性碰撞、激发、电离以及Ar与Ar+之间的弹性碰撞和电荷交换过程。由模拟结果可知,射频极板附近鞘层区域在极短时间内形成,其厚度随着时间的增加而增厚;而射频极板处的粒子通量随着时间的增加逐渐减小。经过一段时间后,射频极板处平均粒子通量、平均电流以及鞘层平均厚度逐渐趋于平衡。在鞘层区域电流主要由位移电流构成,在等离子体区域电流主要由传导电流贡献。最后讨论了达到平衡态后等离子体密度、电势、电场强度和能量的空间分布情况。 In this paper, the one-dimensional particle-in-cell/Monte Carlo collision model is used to simulate time evolution of the Ar discharges produced by a single-frequency capacitively coupled reactor, by considering the elastic and inelastic collisions between Ar, Ar+, Ar* and electrons. The results show that the sheath near the powered electrode is formed in a short time and thickness of the sheath increases with the simulation time, while fluxes of the electrons and Ar+ ions at the powered electrode decrease with increasing time. The flux, potential, current and sheath thickness reach their equilibrium in a few hundred microseconds. The plasma density, potential, electric field and averaged energy are discussed.
出处 《核技术》 CAS CSCD 北大核心 2012年第1期49-54,共6页 Nuclear Techniques
基金 国际热核聚变实验堆(ITER)计划专项(批准号:2009GB104006) 贵州省优秀青年科技人才培养计划(批准号:700968101)资助
关键词 等离子体 鞘层 等离子体粒子模拟方法(PIC/MCC) 容性耦合等离子体源(CCP) Plasma, Sheath, Particle-in-cell/Monte Carlo collision, Capacitively coupled reactor
  • 相关文献

参考文献2

二级参考文献36

  • 1Pekker L. Longitudinal distribution of plasma density in the low-pressure glow discharge with transverse magnetic field [J]. Plasma Sources Sci. Techn., 1995, 4: 31-35.
  • 2Birdsall C K, Langdon A B. Plasma physics computer simulation [M]. New York: McGraw-Hill, 1985.
  • 3Nanbu K, Segawa S, Kondo S. Self-consistent particle simulation of three-dimension dc magnctron discharge [J]. Vacuum, 1996, 47: 1013-1016.
  • 4Nanbu K, Kondo S. Analysis of three-dimensional dc magnetron discharge by the partial-in-cell/Monte Carlo method [J]. Jpn. J. Appl. Phys. Part 1, 1997, 36 (7B): 4808--4813.
  • 5Kondo S, Nanbu K. A self-consistent numerical analysis of a planar dc magnetron discharge by the particle- in-cell/Monte Carlo method [J]. J. Phys. D: Appl. Phys., 1999, 32: 1142-1152.
  • 6Kondo S, Nanbu K. Axisymmetrical particle-in-cell/ Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge [J]. J. Vae. Sei. Techn. A, 2001, 19(3): 830-837.
  • 7Shon C H, Lee J K,Lee H J, et al. Velocity distributions in magnetron sputter [J]. IEEE transactions on plasma science, 1998, 26(6): 1635-1644.
  • 8Shon C H, Park J S, Kang B K, et al. Kinetic and steady-state properties of magnetron sputter with three- dimensional magnetic field [J]. Jpn. J. Appl. Phys., 1999, 38: 4440-4449.
  • 9Kolev I, Bogaerts A. Numerical models of the planar magnetron glow discharges [J]. Contrib. Plasma Phys., 2004, 44(7-8): 582-588.
  • 10Kolev I, Bogaerts A, Gijbels R. Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons [J]. Phys. Rev. E, 2005, 72: 056402-1-11.

共引文献2

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部