期刊文献+

分子筛催化剂上甲醇与三聚甲醛缩合制聚甲醛二甲醚 被引量:46

Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts
下载PDF
导出
摘要 对HY、HZSM-5、Hβ和HMCM-22分子筛催化剂上甲醇与三聚甲醛缩合制聚甲醛二甲醚(PODEn或DMMn)的反应性能进行了研究,考察了分子筛种类和酸性对产物分布的影响。结果显示,以酸性分子筛为催化剂,甲醇与三聚甲醛可缩合得到聚甲醛二甲醚。HY分子筛上反应产物主要为短链的甲缩醛(DMM);HZSM-5和Hβ分子筛上产物以DMM1~3为主,其柴油添加剂组分DMM3~8的收率分别为6.40%和13.78%;HMCM-22分子筛为催化剂时,长链的聚合物收率明显增加,其柴油添加剂组分DMM3~8的收率可以达到29.39%。NH3-TPD表征结果表明催化剂表面的酸性对产物分布有着明显的影响:表面弱酸位有利于短链产物DMM的生成,而中等强度的表面酸性位则能促进柴油添加组分DMM3~8的生成。 Polyoxymethylene dimethyl ethers (PODEn or DMM, ) were synthesized by the condensation of methanol and trioxymethylene over the catalysts of several molecular sieves like HY, HZSM-5, HI3 and HMCM- 22; the effect of their acidic properties on product distribution was investigated. The results indicated that the acidic molecular sieves, especially HMCM-22, are catalytically active for the condensation of methanol and trioxymethylene to form DMM~. Over HY, the main product is dimethoxymethane (DMM), with a selectivity of 92.87%. Over HZSM-5 and HI3, the main products turn to be DMM1-3 and the yields of D/k/[b/I3 -8, which are ideal additives for diesel fuel, reach 6.40% and 13.78%, respectively. With HMCM-22 as the catalyst, the formation of long chain DMMn products is further enhanced and the yield of DMM3 -8 attains 29.39%. The results of NH3-TPD demonstrated that the product distribution is related to the surface acidic properties of the catalyst used; short chain DMM may be primarily formed on weak acidic sites, while the acidic sites of medium strength can enhance the formation of diesel fuel additive components DMM_3 - 8
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2011年第12期918-923,共6页 Journal of Fuel Chemistry and Technology
基金 国家重点基础研究发展计划(973计划 2011CB201400 2010CB234603) 中科院知识创新方向项目(KJCX2.YW.H16) 国家自然科学基金(10979068 20876163)
关键词 分子筛 聚甲醛二甲醚 甲醇 三聚甲醛 HMCM-22 molecular sieves polyoxymethylene dimethyl ethers methanol trioxymethylene HMCM-22
  • 相关文献

参考文献17

  • 1雷艳华,孙清,陈兆旭,沈俭一.合成聚甲醛二甲基醚反应热力学的理论计算[J].化学学报,2009,67(8):767-772. 被引量:31
  • 2FLEISCH T H,SILLS R A.Larege-scale gas conversion through oxygenates:beyond GTL-FT[J].Stud Surf Sci Catal,2004,147:31-36.
  • 3武建兵,王辉,秦张峰,吴志伟,黄礼春,赵启,王建国.V_2O_5/TiO_2-ZrO_2催化剂上甲醇选择氧化制甲缩醛[J].燃料化学学报,2011,39(1):64-68. 被引量:10
  • 4李欢,李军平,肖福魁,魏伟,孙予罕.Mn/Re/Cu体系催化剂催化甲醇一步合成二甲氧基甲烷的研究[J].燃料化学学报,2009,37(5):613-617. 被引量:11
  • 5LU X,QIN Z,DONG M,ZHU H,WANG G,ZHAO Y,FAN W,WANG J.Selective oxidation of methanol to dimethoxymethane over acid-modified V2O5/TiO2 catalysts[J].Fuel,2011,90(4):1335-1339.
  • 6王淑娟,陶克毅.不同类型分子筛对甲缩醛的催化性能[J].吉林大学学报(理学版),2002,40(3):320-323. 被引量:14
  • 7LIU H,IGLESIA E.Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+n VnMo12-nPO40 Keggin structures[J].J Phys Chem B,2003,107(39):10840-10847.
  • 8LIU H,BAYAT N,IGLESIA E.Site titration with organic bases during catalysis:Selectivity modifier and structural probe in methanol oxidation on Keggin clusters[J].Angew Chem Int Ed,2003,42(41):5072-5075.
  • 9LIU H,IGLESIA E.Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate Keggin clusters[J].J Catal,2004,223(1):161-169.
  • 10MASAMOTO J,MATSUZAKI K.Development of methylal synthesis by reactive distillation[J].J Chem Eng Jpn,1994,27 (1):1-5.

二级参考文献45

  • 1申威,张阿玲,韩维建.车用合成燃料能源消费和温室气体排放对比分析[J].清华大学学报(自然科学版),2007,47(3):441-444. 被引量:13
  • 2Gary, P. H.; Michael, J. S. US 6160186, 2000 [Chem. Abstr. 2000, 132, 350085].
  • 3Schelling, H.; Stroefer, E.; Pinkos, R.; Haunert, A.; Tebben, G. D.; Hasse, H.; Blagov, S. CN 101048357, 2007 [Chem. Abstr. 2006, 144, 432473].
  • 4Wiberg, K. B.; Murckot, M. A. ,1. Am. Chem. Soe. 1989, 111, 4821.
  • 5Huang, Y. R.; Knippenberg, S.; Hajgato, B.; Francuois, J. P.; Deng, J. K.; Deleuze, M. S. .1. Phys. Chem. A 2007, 111, 5879.
  • 6Smith, G. D.; Jaffe, R. L. J. Phys. Chem. 1994, 98, 9072.
  • 7Frisch, M. J.; Truck, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghava- chari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Ba- boul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayak- kara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Revision B.04, Gaussian, Pittsburgh, PA, 2003.
  • 8Smith, G. D.; Jaffe, R. L. J. Phys. Chem. 1994, 98, 9078.
  • 9Cramer, C. J.; Kelterer, A. M. J. Comput. Chem. 2001, 22, 1194.
  • 10Peterson, S.; Good, D. A.; Francisco, J. S. J. Phys. Chem. A 1999, 103, 916.

共引文献62

同被引文献366

引证文献46

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部