期刊文献+

土壤中耐砷细菌的筛选和砷还原基因多样性分析 被引量:8

Isolation of arsenic-resistant bacterias from soil and the diversity of arsenate reducing genes
下载PDF
导出
摘要 采用琼脂平板培养法从湖南富砷土壤中筛选出43株耐砷细菌。16S rRNA序列分析结果表明所筛选菌分属于四个门:Actinobacteria、Proteobacteria、Firmicutes、Bacteroidetes,其中71.1%为革兰氏阳性菌。通过PCR和克隆测序等方法检测耐砷菌的砷还原相关基因(arrA、arsC、arsB/ACR3)及其基因多样性。检测结果显示:43株菌中,6.9%含异化砷还原基因arrA,30.2%含细胞质砷还原基因arsC,27.9%含As(III)运载蛋白基因arsB/ACR3,这些基因在细菌中的出现频率较低。通过Mega软件构建系统发育树发现arrA基因的多样性可能受一定的地域差异影响,arsC基因在一些菌株中存在着基因水平转移现象,同时表明α变形菌可能更倾向于拥有Acr3型As(III)载体蛋白,而arsB则多出现在芽孢杆菌中。 Forty-three arsenic-resistant bacteria were isolated by agar plates from arsenic-contaminated soil from Hunan Province. The 16S rRNA sequence analysis results showed that these strains belonged to four phyla : Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes, and 7 1. 1 percent of them were gram-positive bacteria. PCR amplification and sequencing methods were used fordetecting the occurrence of some functional genes related to arsenate reduction (arrA, arsC, arsB/ACR3) and the gene diversity. The results showed 6.9% of 43 strains owned arsenate respiratory reductase gene arrA, 30.2% contained cytoplasmic arsenate reductase gene arsC, and 27.9% strains were positive of arsenit transporter gene arsB/ACR3. The occurrence of these genes among the strainswas in low frequency. Phylogenetic trees constructed by MEGA exhibited the diversity of arrA gene may be influenced by area variation. The horizontal transfer of arsC gene was found in some strains. It also suggested that a-proteobacteria might prefer the arsenite transporter ofAcr3, while arsB were mostly present in Bacillus.
出处 《生态环境学报》 CSCD 北大核心 2011年第12期1919-1926,共8页 Ecology and Environmental Sciences
基金 中国科学院知识创新工程青年人才类重要方向项目(KZCX2-EW-QN410) 中国科技部国际科技合作项目(2009DFB90120) 国家自然科学基金面上项目(31070101)
关键词 耐砷菌 异化砷还原基因arrA 细胞质砷还原基因arsC As(III)运载蛋白基因arsB/ACR3 基因多样性 Arsenic-resitant bacteria Arsenate respiratory reductase gene arrA Cytoplasmic arsenate reductase gene arsC Arsenitetransporter genes arsB/ACR3 Gene diversity
  • 相关文献

参考文献25

  • 1REYES C,LLOYD J R,SALTIKOV C W.Arsenic Contamination of Groundwater:Mechanism,Analysis,and Remediation[M].USA,SAHUJA,2008:123-146.
  • 2LEE K Y,YOON I H,LEE B T,et al.A novel combination of anaerobic bioleaching and electrokinetics for arsenic removal from mine tailing soil[J].Environmental Science and Technology,2009,43(24):9354-9360.
  • 3SODA S,KANZAKI M,YAMAMUARA S,et al.Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation fo arsenic-contaminated soil[J].Journal of Bioscience and Bioengineering,2009,107(2):130-137.
  • 4OREMLAND R S,STOLZ J F.The ecology of arsenic[J].Science,2003,300(5621):939-944.
  • 5SILVER S,PHUNG L T.Genes and enzymes involved in bacterial oxidation and reduction of Inorganic arsenic[J].Applied and Environmental Microbiology,2005,71(2):599-608.
  • 6MUKHOPADHYAY R,ROSEN B P,PHUNG L T,et al.Microbial arsenic:from geocycles to genes and enzymes[J].FEMS Microbiology Reviews,2002,26(3):311-325.
  • 7CAVALCA L,ZANCHI R,CORSINI A,et al.Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil,and screening of potential plant growth-promoting chatacteristics[J]. Systematic and Applied Microbiology,2010,33(3):154-164.
  • 8SUNDARAM S,RATHINASABAPATHI B,MA L Q,et al.An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L.regulates intracellular arsenite[J].The Journal of Biological Chemistry,2008,283(10):6095-6101.
  • 9LEE C S,LI X D,SHI W Z,et al.Metal contamination in urban,suburban,and country park soils of Hong Kong:A study based on GIS and multivariate statistics[J].Science of Total Environment,2006,356(1-3):45-61.
  • 10DELONG E F.Archaea in coastal marine environments[J].Proceedings of the National Academy of Sciences of the USA,1992,89:5685-5689.

同被引文献96

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部