期刊文献+

两种海洋细菌对海底沉积物微生物燃料电池产电效能及其阳极表面细菌群落的影响

The Influences of Two Marine Bacteria to the Bacterial Community Compositions of the Anode and the Electricity Production Efficacy of Marine Benthic Microbial Fuel Cell
下载PDF
导出
摘要 从海底沉积物微生物燃料电池(Benthic microbial fuel cell,BMFC)模型的阳极表面分离得到了异养可培养优势细菌蜡样芽孢杆菌(Bacillus cereus)LYX03和一株海洋新菌一海洋底泥食冷菌(Algoriphagus faecimaris )LYX05,并分别加入BMFC阳极表面;通过电压输出功率变化和变性梯度凝胶微生物指纹图谱技术结合16SrDNA序列分析,进一步研究其对BMFC产电效能和阳极表面菌群的影响。同时进一步探讨了葡萄糖和LB培养基对BMFC的产电效能和阳极表面菌群的影响。结果表明海洋底泥食冷菌和LB培养基的直接加入导致该电池模型的产电效能显著降低,而蜡样芽孢杆菌及其胞外DNA,葡萄糖的添加对输出电压无显著影响。海洋细菌和碳源的加入对电池阳极表面菌群的种类组成有较大的扰动,导致细菌种类多样性的降低,其中华丽杆菌(Chryseobacteriurn sp.)为易感种类。 The dominant strain Bacillus cereus LYX03, isolated from the heterotrophic culture of marine benthic microbial fuel cell (MBMFC), and a newly identified marine bacteria Algoriphagus faecimaris LYX05 isolated from the same source, were injected to the surface of anode of MBMFC. The bacterial community compositions and the electricity production efficacy of MBMFC were analyzed by means of bacterial fingerprinting technique denaturing gradient gel electrophoresis, 16S rDNA sequencing and voltam meter analyses. The effects of glucose and LB medium to the bacterial community compositions and electricity production efficacy were further analyzed. The results indicated that Algoriphagus faecimaris LYX05 and LB medium decreased the electricity production efficacy of MBMFC significantly. While the injections of Bacillus cereus LYX03, extracellular DNA and glucose did not generated significant effects. The injections of two marine bacterial strains and carbon source such as glucose, and LB medium showed a large disturbance of microbial communities of the anodes with decreased bacterial diversity. Chryseobacterium sp. was the most vulnerable species.
出处 《海洋科学进展》 CAS CSCD 北大核心 2011年第A01期36-42,共7页 Advances in Marine Science
基金 国家海洋局海洋可再生能源资金专项--海泥电池能源供电关键共性技术及驱动监测仪器实海验证研究(GHME2011GD04) 山东省科技发展计划(山东省重点自然基金项目)--海泥电池阳极/生物膜界面性能优化及电子传递动力学活性(ZR2011BZ008)
关键词 海洋细菌 微生物燃料电池 细菌群落 marine bacteria benthic microbial fuel cell microbial community
  • 相关文献

参考文献20

  • 1LEE J,PHUNG N T,CHANG I,et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses [J]. FEMS. Microbiol. Lett., 2003,223 : 185 191.
  • 2ETTOUMI B,RADDADI N,BOR1N S, et al. Diversity and phylogeny of culturable spore forming Bacilli isolated from marine sediments[J]. J. Basic. Microbiol. , 2009,49 : S13-S23.
  • 3GONTANG E,FENICAI. W,JENSEN P. Phylogenetic diversity of gram-positive bacteria cultured from marine sediments [J]. Appl. Environ. Microbiol. ,2007,73(10):3272 3282.
  • 4COPA PATINO J, ARENAS M,SOLIVERI J, et al. Alg;oriphagus hitonicola sp. nov. , isolated from an athalassohaline lagoon [J]. Int. J. Syst. Evol. Microbiol. ,2007,58:424- 428.
  • 5DELONG E,CHANDLER P. Power from the deep[J].Nat. Biotechnol. ,2002,20:788- 789.
  • 6REIMERS C,GIRGUIS P,STECHER H, et al. Microbial fuel cell energy from an ocean cold seep [J].Geobiology. , 2006, 4:123-136.
  • 7HOLMES D,CHAUDHURI S, NEVIN K, et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurre ducens [J].Environ. Microbiol. , 2006,8 : 18005-18015.
  • 8ABED R, ZEIN B, AI. THUKAIR A,et al. Phylogenetic diversity and activity of aerobic heterotrophic bacteria from a hypersaline oil-polluted microbial mat [J].Syst. Appl. Microbiol. , 2007,30 : 319-330.
  • 9BUCHAN A,GONZALEZ J, MORAN M. Overview of the marine Roseobacter lineage [J].Appl. Environ. Microbiol. , 2005,71: 5665- 5677.
  • 10GONZdLEZ J, KIENE R, MORAN M. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the a subclass of the class Proteobacteria [J].Appl. Environ. Microbiol. , 1999,65 : 3810-3819.

二级参考文献21

  • 1冯雅丽,联静,杜竹玮,李浩然.无介体微生物燃料电池研究进展[J].有色金属,2005,57(2):47-50. 被引量:17
  • 2Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol, 2005, 39:5488-5493.
  • 3Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol, 2003, 21 (10): 1229-1232.
  • 4Lovley DR. Microbial fuel cells: Novel microbial physiologies and engineering approaches. Curr Opin Biotechnol, 2006, 17:327-332.
  • 5Biffinger JC, Pietron J. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors & Bioelectronics, 2007, 22:1672-1679.
  • 6Susan E. Childers, Stacy Ciufo, Lovley DR. Geobacter metallireducens accesses insoluble Fe (Ⅲ) oxide by chemotaxis. Nature, 2002, 416: 767-769.
  • 7Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435 (43): 1098-1101.
  • 8Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295:483-485.
  • 9Davis F, Higson SePJ. Biofuel cells--Recent advances and applications. Biosensors & Bioelectronics, 2007, 22:1224-1235.
  • 10Balch WE, Fox GE, Magrum L J, Woese CR, Wolfe RS. Methanogens: Reevaluation of a unique biological group. Microbobiol Rev, 1979, 43 (2): 260-296.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部