期刊文献+

具有时滞的二阶微分方程边值问题解的存在性 被引量:2

The Existence of boundary value problems' Solutions about Differential Equation with Second Order and Time Lags
下载PDF
导出
摘要 研究了一类具有时滞的二阶微分方程三点共振边值问题,利用Mawhin连续性定理获得了该边值问题解的存在性的充分条件,得到了一些新的结果. The three-point boundary value problems at resonance for a class of differential equations of second order with time lags were studied.New results were obtained on existence of solutions for this boundary value problem by using Mawhin's continuation theorem.
作者 杨金云
机构地区 徐州工程学院
出处 《徐州工程学院学报(自然科学版)》 CAS 2011年第4期31-34,共4页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 江苏省高校自然科学基金项目(09KJD110006) 徐州工程学院教研项目(YGJ1112)
关键词 时滞 共振 三点边值问题 连续性定理 time lags resonance a three-point boundary value problem continuation theorem
  • 相关文献

参考文献7

  • 1马德香,葛渭高.一维p-Laplacian方程多点边值问题迭代解的存在性[J].数学学报(中文版),2008,51(3):447-456. 被引量:5
  • 2Feng H Y,,Ge W G.Triple symmetric positive solutions for multipoint boundary-value problem with one-dimensional p-Laplacian. Mathematical and Computer Modelling . 2008
  • 3Bai D Y,Xu Y T.Existence of positive solutions for boundary-value problems of second-order delay differential equations. Journal of Applied Mathematics . 2005
  • 4Y. Y. WANG ,,W. G. GE.Multiple Positive solutions for multipoint boundary value Problems with one-dimensional p-Laplacian. Journal of Mathematical Analysis and Applications . 2007
  • 5W. Wang,J. Sheng.Positive solutions to a multi-point boundary value problem with delay. Applied Mathematics and Computation . 2007
  • 6Jiang D.Q,Wang J.Y.On boundary value problems for singular second-order functional differential equations. Com-put.Appl.Math . 2000
  • 7Jiang D.Q.Multiple positive solutions for boundary value problems of second-order delay differential equations. Applied Mathematics Letters . 2002

二级参考文献1

共引文献4

同被引文献19

  • 1I F Steffensen. Remarks on iteration [ J ]. Skand. Ak- tuarietidskr,1933, 16:64-72.
  • 2J R Sharma. A composite third order Newton-Steffensen method for solving nonlinear equations [ J ]. Appl. Math. Comput. , 2005, 169 : 242-246.
  • 3M V Kanwar, V K Kukreja, S Singh. On a class of quadratically convergent iteration formulae [ J ]. Appl. Math. Comput. , 2005, 166: 633-637.
  • 4Nenad Ujevic. A method for solving nonlinear equations [J]. Appl. Math. Comput., 2006,174: 1416-1426.
  • 5Nenad Ujevic. An iterative method for solving nonlinear equations [J]. J. Comput. And Appl. Math., 2007, 201 : 205-216.
  • 6Muhammad Aslam Noor, Faizan Ahmad. Fourth-order convergent iterative method for nonlinear equation [ J ]. Appl. Math. Comput. , 2006, 182: 1000-1004.
  • 7Emin Kahya, Jinhai Chen. A modified Secant method for unconstrained optimization [J]. Appl. Math. Com- put. , 2007, 186: 1149-1153.
  • 8Jinhai Chen, Some new iterative methods with three-or- der convergence [J]. Appl. Math. Comput. 2006, 181 : 1519-1522.
  • 9Muhammad Aslam Noor, Khalida Inayat Noor, Waseem Asghar Khan, Faizan Ahmad. On iterative methods for nonlinear equations [ J ]. Appl. Math. Comput. , 2006, 183 : 128-133.
  • 10任樟辉.数学思维论[M]南宁:广西教育出版社,1996.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部