期刊文献+

具有线性收敛率的极小化r个最大函数和的光滑化方法

The Smoothing Method with the Linear Rate of Convergence for Minimizing the Sum of the r-Largest Functions
下载PDF
导出
摘要 在已给q个定义于n维欧几里徳空间的函数中求r个最大值函数和的最小值,其中1≤r≤q。该问题是非光滑最优化问题,不能直接用一阶最优化方法或梯度法求解。利用对偶理论将该问题转化为只包含最大值函数max{0,t}的非光滑问题。运用对数-指数光滑函数,对该非光滑问题建立具有全局收敛的光滑化算法。该算法的收敛率是线性的。 Abstract. Given a collection of q functions defined on R^n , we minimize the sum of the r largest functions of the collection, where 1≤r≤q. It is obvious that this is a non-smooth optimization problem. It cannot be solved by using any first-order or gradient unconstrained minimization algorithms. In this paper, the problem is reformulated as a non-smooth problem that only involves the maximum function max {0, t} using the duality theory. A new globally convergent smoothing method is then developed with the log-exponential smoothing function. The convergence rate of the smoothing method is linear.
作者 刘三明
出处 《上海电机学院学报》 2011年第6期408-412,共5页 Journal of Shanghai Dianji University
基金 国家高技术研究发展计划(863)项目资助(2009AA04Z220) 上海电机学院科研启动经费项目资助(09c404)
关键词 r个最大函数和 非光滑问题 光滑化法 sum of the r largest functions non-smooth problem smoothing method
  • 相关文献

参考文献15

  • 1Slater P J. Centers to centroids in graphs[J]. Jour nal of Graph Theory, 1978,2(3) : 209-222.
  • 2Andreatta G, Mason F M. K-eccentricity and absolute k-centrum of a probabilistic tree[J]. European Journal of Operational Research, 1985,19(1) : 114-117.
  • 3Andreatta G, Mason F M. Properties of the k-centra in a tree network[J].Networks, 1985 15(1) :21-25.
  • 4Ogryczak W, Zawadzki M. Conditional median: a parametric solution concept for location problems [J]. Annals of Operations Research, 2002,110(1/ 4) :167-181.
  • 5Blanco V, E1-Haj Ben-Ali S, Puert J. A semidefi- nite Programming approach for minimizing ordered weighted averages of rational functions [EB/OL].(2011-06 28)L2011-O9-OSJ. http://arxiv, org/abs/ 1106.2407.
  • 6Tamir A. The k-centrum multi-facility location pro blem[J].Discrete Applied Mathematics, 2001 109:293 307.
  • 7Kazuki T, Yoshiaki O, Hiroshi K, et al. An opti mal location of k-centrum problems in a planar space[J]. Theory and Applications of GIS, 2009, 17(1): 101-110.
  • 8Ohsawa Y, Ozaki N, Plastria F, et al. Quadratic ordered median location problems [J].Journal of the Operations Research Society of Japan, 2007,50 (4) : 540-562.
  • 9Pan Shaohua, Li Xingsi. An efficient algorithm for the Euclidean r-centrum location problem [J].Applied Mathematics and Computation, 2005,167 (1) : 716- 728.
  • 10Pan Shaohua, Chen Jinshan. Two unconstrained optimization approaches for the Euclidean k-cen- trum location problem[J]. Applied Mathematics and Computation, 2007,189(2) :1368-1383.

二级参考文献16

  • 1[1]Slater P J.Centers to centroids in a graph[J].Journal of Graph Theory,1978(2):209-222.
  • 2[2]Andreatta G,Mason F M.K-eccentricity and absolute k-centrum of a tree[J].European Journal of Operations Research,1985,19:114-117.
  • 3[3]Andreatta G,Mason F M.Properties of k-centrum in anetwork[J].Networks,1985,15:21-25.
  • 4[4]Ogryczak W,Zawadzki M.Conditional median:a parametric solution concept for location problem[J].Annals of Operations Research,2002,110:167-181.
  • 5[5]Tamir A.The k-centrum multi-facility location problem[J].Disrecte Applied Mathematics,2001,109:293-307.
  • 6[6]Ogryczak W,Tamir A.Minimizing the sum of the k largest functions in linear time[J].Information Processing Letters,2002,85:117-122.
  • 7[7]Pan S H,Li Xingsi.An efficient algorithm for the Euclidean r-centrum location problem[J].Applied Mathematics and Computation,2005,167:716-728.
  • 8[8]Pan S H,Li Xingsi.A smoothing method for minimizing the sun of the r largest functions[J].Optimization Methods and Software,2007,22:267-277.
  • 9Slater P J. Centers to Centroids in a Graph. [ J ]. J Graph Theory, 1978 (2) :209 -222.
  • 10Andreatta G, Mason F M. k-eccentricity and Absolute k-centrum of a Tree [ J ]. European J Oper Res, 1985,19:114 - 117.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部