摘要
木材形成是木本植物特有的生物学过程,拟南芥在适当的诱导条件下也能形成类似"木材"的维管组织,因而可以借助拟南芥丰富的基因资源研究木材形成的分子机制。利用前期建立的毛白杨次生维管系统再生实验体系,通过拟南芥表达谱芯片分析再生过程中的基因表达变化,获得149个差异表达基因。选择其中转录因子等调控基因及功能未知基因共89个基因的总计151个拟南芥突变体,经次生诱导培养发现,20个突变体的发芽率或成活率降低,10个突变体表型变化明显,出现维管系统次生生长发育受到抑制、生长速度减慢等,推测这些基因参与调控拟南芥的次生生长。将木本植物与草本植物的研究体系相结合,利用拟南芥次生生长诱导体系研究木材发育相关基因功能,为木材发育的基因功能研究提供一条可行、有效,快速解析基因功能的新途径。
Wood formation is unique biological process in woody plants.However,Arabidopsis thaliana can also develop certain amount of "wood tissues" under the appropriate induced conditions.Since its rich online genetic resources and information are available,A.thaliana could serve as a model used to study wood formation.Using the previously established platform of regeneration of secondary vascular system in poplar,gene expression profiles were analyzed through the Arabidopsis cDNA microarray.One hundred and forty-nine genes showed transcript-level differences at the different regeneration stages.Eighty-nine genes,including transcriptional factors and function unknown genes,were selected as candidates for investigating Arabidopsis mutants under the induced secondary growth condition to check their morphology and structure.The results showed that 20 mutants had low germination or survival rates,while 10 mutants had various morphological and anatomical changes caused through the inhibition of the secondary vascular development in these mutants.These changes suggested that these genes would be involved in the regulation of secondary growth in A.thaliana.In this study,woody and herbaceous plants experimental systems were combined to preliminarily study the gene functions related to wood formation by referring to the secondary growth in A.thaliana.This study would provide a feasible and effective,rapid analysis method to screen genes related to wood formation.
出处
《林业科学》
EI
CAS
CSCD
北大核心
2011年第12期36-42,共7页
Scientia Silvae Sinicae
基金
林业公益性行业科研专项重点项目"重要乡土树种核心种质评价及高效育种共性技术研究"(201004009)
内蒙古自治区自然科学基金项目(20080404MS0513)
关键词
木材发育
拟南芥
突变体
次生生长
基因
wood formation
Arabidopsis thaliana
mutant
secondary growth
gene