期刊文献+

溶剂热法合成CoS纳米晶及其表征 被引量:3

Solvothermal synthesis and characterization of cobalt sulfide nanocrystals
下载PDF
导出
摘要 以六水合硝酸钴(Co(NO3)2.6H2O)和硫脲为原料,采用混合溶剂热法制备硫化钴(CoS)纳米晶。利用X射线衍射(XRD),扫描电镜(SEM)和透射电镜(TEM)对硫化钴纳米晶的组成、粒径及表面形貌进行表征。结果表明,在180℃恒温条件下所得粉末样品为六方相CoS纳米粉末,粉末粒径在40 nm左右。粉末的产率随温度升高而增大,当反应温度上升到180℃时产率接近60%;温度进一步升高到200℃时产率基本不变,但晶粒异常长大。加入分散剂PEG能有效控制粉末颗粒的尺寸并抑制粉末的团聚;此外,减少有机溶剂EG的含量可获得更高结晶度的CoS纳米晶,但由于反应速率过快,不利于控制粉末的粒径。 The CoS nanocrystals were synthesized by a solvethermal method, using Co(NO3)2·6H2O and thiourea as raw materials. Composition, particle size and surface morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The results show that the as-prepared material are CoS nanoparticles at 180 ℃, witch diameter is about 40 nm. Powder production rate increases with increasing temperature, when the reaction temperature rises to 180 ℃, the yield close to 60%. When temperature further increases to 200℃, the yield remains unchanged, but abnormal grain growth happened. Addition of dispersant PEG can effectively control the size of the particles and inhibit the reunite of products. In additions, higher degree of crystallinity of the CoS nanocrystals can be synthesized by reducing the content of organic solvent EG but it is not beneficial to control powder particle size, because the reaction rate is too fast.
出处 《粉末冶金材料科学与工程》 EI 2011年第6期886-891,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(50774096) 中南大学中央高校基本科研业务费专项资金资助项目(2001QNT046) 中南大学博士后基金资助项目 中国博士后基金资助项目 湖南省博士后科研计划项目
关键词 纳米CoS 溶剂热法 分散剂 CoS nanoparticles solvothermal method dispersant
  • 相关文献

参考文献22

  • 1YU Zhen-rui, DU Jin-hui, GUO Shu-hua. CoS thin films prepared with modified chemical bath deposition [J]. Thin Solid Films, 2002, 415: 173-176.
  • 2YAN J M, HUANG H Z, ZHANG J. A study of novel anode material CoS2 for lithium ion battery [J]. Journal of Power Sources, 2005, 146: 264-269.
  • 3孙淑洋,刘延东,曹军记,种晋.二硫化钴作高功率热电池正极材料的研究[J].电源技术,2003,27(1):28-30. 被引量:23
  • 4ZHU L, SUSAC D, TEO M, et al. Investigation of CoSz-based thin films as model catalysts for the oxygen reduction reaction [J]. Journal of Catalysis, 2008, 258: 235-242.
  • 5HIRAKA H, MATSUURA M, Yamada K, et al. Spin dynamics in a metallic ferromagnet CoS2 [J]. Physica B, 1997, (237/238): 478-479.
  • 6YAMADA H, TERAO K, AOKI M. Electronic structure and magnetic properties of CoS2 [J]. Journal of Magnetism and Magnetic Materials 1998, (177/181): 607-608.
  • 7BI Hong, HE Jia-qing, WU Zhi-chao. Preparation and magnetic properties of CoSJKGM nanocomposite film [J]. Journal of Anhui University: Natural Science Edition, 2002, 26(1): 72-75.
  • 8ZHANG Ya-hui, GUO Lin, LIU Kang, et al. Synthesis of uniform clew-like cobalt sulfide nanochains by mild solution chemical route and their magnetic property [J]. Rare Metal Materials and Engineering, 2009, 38(2): 1003-1006.
  • 9高友禄.CoS薄膜的制备和介电性质的研究[J].化工时刊,2006,20(8):17-18. 被引量:2
  • 10程二奎.CoS催化脱硫技术的应用及分析[J].煤气与热力,2004,24(1):49-51. 被引量:3

二级参考文献149

共引文献86

同被引文献22

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部