期刊文献+

矩阵论中的图论匹配法 被引量:1

Matching method of graph theory in matrix theory
下载PDF
导出
摘要 G.Birkhoff用代数的方法证明了如果一个矩阵是双随机矩阵,则它能表示成置换矩阵的凸线性组合.设G是具有两分类(X,Y)的二部图,则G中含有饱和X中的所有顶点的匹配M的充分必要条件为:对S■X,有dG(S)≥|S|.文章借助上述二部图的匹配思想,给出这一结论的图论证明. Let a non-negative real matrix Q be doubly stochastic,and a permutation matrix be a(0,1)-matrix which has exactly one 1 in each row and each column,then every permutation matrix will be doubly stochastic matrix.G.Birkhoff proved a conclusion that every doubly stochastic matrix Q can be expressed as a convex linear combination of permutation matrixs using the method of algerbra.Let G be a bipartite graph with bipartition(X,Y),then G contains a matching M that saturates every vertex in X if and only if dG(S)≥|S| for all S X.In this paper,we obtain the proof of graph theory on the conclusion using the above matching theorem of bipartite graph.
作者 陈丽娟
出处 《南京信息工程大学学报(自然科学版)》 CAS 2011年第6期571-573,共3页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 教育部科学技术研究重点项目(207047)
关键词 双随机矩阵 置换矩阵 二部图 匹配 doubly stochastic matrix permutation matrix bipartite graph matching
  • 相关文献

参考文献6

  • 1Birkhoff D. Tres observaciones sobre el algebra lineal [J]. Univsidad Naccional de Tucuman Revista, Serie A, 1946,5: 147-151.
  • 2Stuart J L, Weaver J R. Diagonally scaled permutations and eirculant matrices [ J ]. Linear Algebra and Its Applications, 1994,212-213:397-411.
  • 3谭尚旺.矩阵特征多项式的图论计算公式[J].纯粹数学与应用数学,2009,25(2):209-216. 被引量:3
  • 4Liu G Z,Zhu B H. Some problems on factorizations with constraints in bipartite graphs[J]. Discrete Applied Mathematics, 2003,128(2) :421-434.
  • 5李世群.简单图的最大匹配的矩阵求法[J].数学的实践与认识,2007,37(7):120-124. 被引量:3
  • 6Bondy J A,Murty U S R. Graph theory with application [ M ] New York:Elsevier Science Press,1976.

二级参考文献7

共引文献4

同被引文献14

  • 1Cheng 1. J, Ding Y S, Hao K R, et al. An ensemble kernel classifier with immune clonal selection algorithm for au tomatic discriminant of primary open angle glaucoma [J]. Neuro Computing, 2012, 83(4) : 1-11.
  • 2Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to mage seg mentation [J].IEEETransactlons on Pattern Analysis and Machine Intelligence, 1993, 15(11):1101- 1113.
  • 3Shi J, Malik J. Normalized cuts and image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(8) :888 -905.
  • 4Grady L, Schwartz E L. Isoperimetric graph partitioning for image segmentation [J] IEEE Transactions on Pat tern Analysis and Machine Intelligence, 2006, 28 (3) : 469-475.
  • 5Felzenszwalb P. Efficient graph-based image segmentation [J]. International Journal of Computer Vision , 2004, 59 (2):167- 181.
  • 6张田.一种改进的基于图的图像分割方法[J].西华大学学报(自然科学版),2011,30(1):61-64. 被引量:5
  • 7卢鹏,王锡淮,肖健梅.连续属性决策表离散化的图论方法[J].计算机工程与应用,2012,48(6):13-16. 被引量:2
  • 8方富贵.图论的算法和应用研究[J].计算机与数字工程,2012,40(2):115-117. 被引量:29
  • 9洪汉玉,颜露新,郭祥云,俞喆俊.生产线复杂场景条件下的动目标提取方法[J].华中科技大学学报(自然科学版),2012,40(7):57-61. 被引量:1
  • 10张乾,冯夫健,林鑫,王林.一种基于图论的图像分割算法[J].计算机工程,2012,38(18):194-197. 被引量:7

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部