期刊文献+

蚁群算法在输电工程工期成本优化中的应用

The Application of Colony Algorithm Method in Time and Cost Optimization of Transmission Engineering
下载PDF
导出
摘要 将蚁群算法在输电工程施工中的工期-成本优化中进行了应用。通过建立工期-成本优化数学模型,进行蚁群算法设计得到蚁群算法在输电工程施工中的工期-成本优化中的应用方法,经过对实际输电线路工程的算例分析,证明蚁群算法对于输电工程施工中的工期-成本优化是可行的。 The application of colony algorithm method in time and cost optimization of transmission engineering is researched. The method is gotten through the design of colony algorithm method and the creation of the math- ematical model of time and cost optimization. A calculation example of actual transmission engineering is per- formed to testify that the colony algorithm method can be used in time and cost optimization of transmission en- gineering.
出处 《东北电力大学学报》 2011年第5期124-127,共4页 Journal of Northeast Electric Power University
关键词 蚁群算法 输电工程 工期成本优化 Colony algorithm method Time and cost optimization Transmission engineering
  • 相关文献

参考文献12

  • 1Y. H. Song, C. S. Chou, T. J. Stonham, Combined Heat and Power Economic Dispatch by Improved Ant Colony Search Algorithm [ J ]. Electric Power Systems Research, 1999,52 ( 2 ) : 115 - 121.
  • 2P. RACZYI~ISKI ,Z. GBURSKI. The Search for Minimum Potential Energy Structures of Small Atomic Clusters Application of The Ant Colony Algorithm [ J ]. Materials Science - Poland, 2005,23 ( 3 ) : 599 - 606.
  • 3K. Lenin, M. R. Mohan. Ant Colony Search Algorithm for Optimal Reactive Power Optimization[ J]. SERBIAN JOURNAL OF ELECTRICAL ENGINEERING,2006,3 ( 1 ) :77 - 88.
  • 4Linda Slimani ,Tarek Bouktir. An Ant Colony Optimization for Solving The Optical Power Flow Problem in Medium - Scale Electrical Network [J]. Journal of Electrical Engineering,2006,6 ( 1 ) :10 - 15.
  • 5J. Dreo, P. Siarry. Continuous Interacting Ant Colony Algorithm Based on Dense Heterarchy[ J ]. Future Generation Computer Systems,2004, 20(5) :841 -856.
  • 6Marcus Randall. A Parallel Implementation of Ant Colony Optimization [ J ]. Journal of Parallel and Distributed Computing, 2002,62 ( 9 ) : 1421 - 1432.
  • 7康莉,谢维信,黄敬雄.基于SIS框架和蚁群算法的非线性多目标跟踪[J].电子与信息学报,2008,30(9):2148-2151. 被引量:2
  • 8高尚,孙玲芳,侯志远,杨静宇.基于多样信息素的蚁群算法[J].计算机科学,2006,33(10):160-162. 被引量:6
  • 9马文霜,张洪伟.基于改进ACS-3-opt蚁群算法的TSP[J].计算机工程,2008,34(19):200-202. 被引量:4
  • 10李梅娟,陈雪波,刘臣奇.基于改进蚁群算法拣选作业优化问题的求解[J].计算机工程,2009,35(3):219-221. 被引量:17

二级参考文献48

  • 1田国会,张攀,李晓磊,尹建芹,路飞.一类仓库作业优化问题的混合遗传算法研究[J].系统仿真学报,2004,16(6):1198-1201. 被引量:21
  • 2邵明文,张文修,吴伟志.信息系统知识约简简便算法[J].计算机科学,2003,30(11):25-28. 被引量:10
  • 3吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 4胡峰,代劲,王国胤.一种决策表增量属性约简算法[J].控制与决策,2007,22(3):268-272. 被引量:18
  • 5Liang J Y,Xu Z B. The algorithm on knowledge reduction in incomplete information systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10 ( 1 ) : 95-103
  • 6Leung Y, Li De-yu. Maximal consistent block technique for rule acquisition in incomplete information systems. Information Sciences: An International Journal, 2003,153 : 85-106
  • 7Liu H, Yu L. Feature Selection for Data Mining [EB/OL]. http://www. public. asu. edu/-huanliu/feature_selection.html.2002
  • 8Dorigo M L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computing, 1997,1(1): 53-56
  • 9Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering[J]. Statistics and Computing, 2000(10): 197-208.
  • 10Anderson B, Moore J. Optimal filtering [M]. Englewood Cliffs, Prentice Hall, New Jersy, 1979.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部