期刊文献+

一类具有脉冲作用的两种群竞争系统正周期解的存在性

Existence of Positive Periodic Solutions for a Two-species Competition System with Impulses Effect
下载PDF
导出
摘要 在脉冲微分方程理论和拓扑度理论基础之上,通过应用重合度理论的连续定理和一些积分不等式技巧,给出了一类具有脉冲作用的非自治两种群Lotka-Volterra竞争系统正周期解存在性的充分条件。一个例子被用来描述结果的可行性和有效性。取得的结果在生态管理中具有现实意义和应用价值。关键词:脉冲;正周期解;竞争系统;重合度理论; Based on the theory of impulsive differential equations and topological degree theory,by using continuation theorem of coincidence degree theory and some skills of integral inequalities,the sufficient condition of the existence of positive periodic solutions for a non-autonomous two-species Lotka-Volterra competition system with impulses effect is obtained.An example is presented to illustrate the feasibility and effectiveness of the results.The obtained result has practical significance and application value in ecological management.
作者 王斌
出处 《兴义民族师范学院学报》 2011年第3期96-100,共5页 Journal of Minzu Normal University of Xingyi
关键词 脉冲 正周期解 竞争系统 重合度理论 时滞 impulses positive periodic solutions competition system coincidence degree theory time delay
  • 相关文献

参考文献11

  • 1K. Gopalsamy.Time lags and global stability in two-species competition[J]. Bulletin of Mathematical Biology . 1980 (5)
  • 2Zuowei Cai,Lihong Huang,Haibo Chen.Positive periodic solution for a multispecies compe-tition-predator system with Holling III functionalresponse and time delays. Comp.Appl.Math . 2011
  • 3Xiangsen Liu,Gang Li,Guilie Luo.Positiveperiodic solution for a two-species ratio-dependentpredator-prey system with time delay and impulse. Journal of Mathematical Analysis and Applications . 2007
  • 4R.E.Gaines,J.L.Mawhin.CoincidenceDegree and Nonlinear Differential Equation. . 1993
  • 5Lakshmikantham V,Bainov DD,Simeonov PS.Theory of impulsive differential equations. . 1989
  • 6Bainov D D,Simeonov P S.Impulsive differential equations:periodic solutions and applications. Ptiman Monographs and Surveys in Pure and Applied Mathematics . 1993
  • 7Li Yongkun.On a periodic neutral delay Lotka-Volterra system. Nonlinear Analysis . 2000
  • 8Gopalsamy K.Stability and Oscillation in Delay Differential Equations of population Dynamics. . 1992
  • 9Kuang Yang.Delay differential equations with applications in population dynamics. Mathematics in Science and Engineering Series . 1993
  • 10Ahmad S.On the nonautonomous Lotka-Volterra competition equations. Proceedings of the American Mathematical Society . 1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部