摘要
在脉冲微分方程理论和拓扑度理论基础之上,通过应用重合度理论的连续定理和一些积分不等式技巧,给出了一类具有脉冲作用的非自治两种群Lotka-Volterra竞争系统正周期解存在性的充分条件。一个例子被用来描述结果的可行性和有效性。取得的结果在生态管理中具有现实意义和应用价值。关键词:脉冲;正周期解;竞争系统;重合度理论;
Based on the theory of impulsive differential equations and topological degree theory,by using continuation theorem of coincidence degree theory and some skills of integral inequalities,the sufficient condition of the existence of positive periodic solutions for a non-autonomous two-species Lotka-Volterra competition system with impulses effect is obtained.An example is presented to illustrate the feasibility and effectiveness of the results.The obtained result has practical significance and application value in ecological management.
出处
《兴义民族师范学院学报》
2011年第3期96-100,共5页
Journal of Minzu Normal University of Xingyi
关键词
脉冲
正周期解
竞争系统
重合度理论
时滞
impulses
positive periodic solutions
competition system
coincidence degree theory
time delay