摘要
证明了当Jacobi迭代矩阵B非负时,解线性方程组Ax=b(A为不可约矩阵)的GPSD迭代法(0<ω_i<T_i≤1,i=1,2,…,n)和Jacobi迭代法同时敛散,给出了其谱半径ρ(S_(T,Ω))和ρ(B)之间的关系.
CPSD iterative method(0〈wi〈Ti≤1,i=1,2,…,n)and Jacobi iterative method as the methods For solving linear equation system Ax=b(A is a irreduciable matrix) are proved to be convergent and divergent simultaneously in case Jacobi matrix B is nonnegative. The relation between their spectral radius ρ(ST,Ω) adn ρ(B)is given.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第2期171-176,共6页
Mathematics in Practice and Theory
基金
福建省自然科学基金(S0650018)