期刊文献+

基于视觉注意机制的感兴趣区提取方法

Regions of Interest Extraction Based on Visual Attention Mechanism
下载PDF
导出
摘要 以精确获取图像中对象感兴趣区域为目标,提出一种基于视觉注意机制和K均值聚类相结合的感兴趣区提取方法。图像经过视觉特征提取、高斯金字塔多尺度变换后,依据多特征图合并策略生成显著图。采用K均值聚类方法分割图像的候选区域,并结合显著图提取图像感兴趣区。实验结果表明,运用该方法提取的感兴趣区更接近人类的视觉注意过程,并具有一定的抗噪能力。 In view of exactly acquiring objects of natural images,the way of extracting regions of interest based on vision attention mechanism and k-means clustering was presented.After multi-scale Gaussian pyramids transform,multi-feature maps were combined into a saliency map.The natural image was segmented image regions with the k-means clustering algorithm.Combining with the saliency map,regions of interest was extracted.The experimental results show that the proposed method is closer to the process of human visual attention and demonstrate its effectiveness and robustness.
出处 《煤炭技术》 CAS 北大核心 2012年第1期177-179,共3页 Coal Technology
关键词 视觉注意机制 显著图 K均值聚类分割 感兴趣区 visual attention mechanism saliency map k-means clustering regions of interest
  • 相关文献

参考文献10

  • 1Khanh V, Hua K A, and Tavanapong W. Image retrieval based on regions of interest [J].IEEE Transactions on Knowledge and Data Engineering,2003,15(4): 1045- 1049.
  • 2Bulthoff H H, Lee S W, and Poggio T, et al. Biologically Motivated Computer Vision[M].New York:Springer Publishing Company,2003.
  • 3田媚,罗四维,齐英剑,廖灵芝.基于视觉系统“What”和“Where”通路的图像显著区域检测[J].模式识别与人工智能,2006,19(2):155-160. 被引量:4
  • 4Itti L, Korch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis [J].IEEE Transactions on Pattern Analysis and Machine Intellingence,1998,11 (20)!1254- 1259.
  • 5Itti L, Korch C. Computational modeling of visual attention[J]. Nature Reviews Neuroscience,2001,2(3):194-230.
  • 6Kastner S, Ungerleider L G. Mechanisms of visual attention in the human cortex[J].Annu ,Trv,Neurosci,2000 ( 23 ) :315 -341.
  • 7张巧荣,顾国昌,肖会敏.视觉选择性注意计算模型[J].机器人,2009,31(6):574-580. 被引量:4
  • 8Hou X D, Zhang L Q. Saliency detection: A spectral residual approach [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fos Alamitos, CA, USA:IEEE Computer Society,2007.
  • 9Itti L, Korch C.Feature combination strategies for saliency- based visual attention systems[J].Journal of Electronic Imaging, 2001,10(1):161-169.
  • 10Sun Y R, Fisher R. Object-based visual attention for computer vision[J].Artificial Intelligence,2003.

二级参考文献18

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2Itti L, Koch C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194-230.
  • 3Itti L, Koch C. Feature combination strategies for saliencybased visual attention systems[J]. Journal of Electronic Imaging, 2001, 10(1): 161-169.
  • 4Navalpakkam V, Itti L. An integrated model of top-down and bottom-up attention for optimizing detection speed[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2006: 2049-2056.
  • 5Ma Y F, Zhang H J. Contrast-based image attention analysis by using fuzzy growing[C]//ACM International Conference on Multimedia. New York, USA: ACM, 2003: 374-381.
  • 6Sun Y R, Fisher R. Object-based visual attention for computer vision[J]. Artificial Intelligence, 2003, 146(1): 77-123.
  • 7Won W J, Ban S W, Lee M. Real time implementation of a selective attention model for the intelligent robot with autonomous mental development[C]//IEEE International Symposium on Industrial Electronics. Piscataway, NJ, USA: IEEE Industrial Electronics Society, 2005 : 1309-1314.
  • 8Hou X D, Zhang L Q. Saliency detection: A spectral residual approach[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2007: 1-8.
  • 9Rybak I A, Gusakova V I, Golovan A V, et al. A Model of Attention-Guided Visual Perception and Recognition. Vision Research, 1998, 38(15-16): 2387-2400
  • 10Itti L, Koch C. Computational Modeling of Visual Attention. Nature Reviews Neuroscience, 2001, 2(3): 194-203

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部