期刊文献+

一种具有双控制比例因子的最优间隔超球分类器

An optimal separation hyper-sphere classification model with double proportion control parameters
下载PDF
导出
摘要 针对支持向量描述只考虑目标类训练样本,结合支持向量机最优分类超平面和支持向量描述的思想,引入了异常样本信息的监督机制,建立了最优间隔超球分类器模型,以一个最小的超球包含目标类训练样本和一个尽可能大的超球体将非目标样本隔离在超球体外,使决策超球面与该两个超球面以最大间隔分离,保证了描述精度和泛化性能,同时,为更好地排除对两类样本数据分布中野点的干扰,提出了一种双控制比例因子的控制方法,更加灵活地实现软间隔分类,仿真实例验证了该分类器具有比SVDD更好的分类性能。 After analyzing the disadvantage of unsupervised training of support vector data description (SVDD), combining the advantage of optimal separation hyper-plane and SVDD, and inducing the supervision of information of negative class, a hyper-sphere classification model with optimal separation was proposed. With one minimum hyper-sphere containing positive class and one hyper-sphere as big as possible excluding negative class, the decision hyper-sphere was made to separate itself and the two hyper-spheres with the max distance to improve the model's description accuracy and generalization performance. To remove the interference of bad points, a method with double proportion control parameter was proposed, it could realize soft separation. Simulation results of Banana and UCI data sets showed that the proposed model has better classification performance than SVDD.
机构地区 军械工程学院
出处 《振动与冲击》 EI CSCD 北大核心 2012年第1期97-100,共4页 Journal of Vibration and Shock
关键词 模式识别 统计学习 最优分类超球面 控制比例因子 pattern recognition statistical learning optimal separation hyper sphere proportion control parameter
  • 相关文献

参考文献7

二级参考文献33

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部