期刊文献+

电弧放电等离子体对超声速边界层影响的数值模拟 被引量:4

Numerical Simulation to the Effect of Arc Discharge Plasma Flow Control on Supersonic Boundary Layer
下载PDF
导出
摘要 基于电弧放电等离子体热阻塞机理,对等离子体超声速流动控制过程进行了数值模拟,研究了等离子体对边界层的影响,分析了放电区大小、温度等对其作用效果的影响。结果显示:在高温等离子体放电区的上下游近区发生了边界层分离及漩涡运动;在放电区内有两种边界层,即高温等离子体与外界低温气流之间的温度边界层和气流与壁面之间的粘性边界层;放电区内形成漩涡运动的原因有两个,即内外压差和边界层分离;上游边界层的分离点y轴坐标随温度的增大而减小;增大来流速度,放电区上游分离点y轴坐标呈先增大后减小的趋势、放电区内漩涡运动加剧、下游近区边界层分离点y轴坐标减小。 The effect of arc discharge plasma on high-speed flow control based on the dominant thermal mechanism is numerically investigated, the effect of arc discharge plasma flow control on transsonic boundary layer is studied and effects of different geometrical configurations and different plasma temperatures on arc discharge plasma flow control are analyzed in detailed. The results show that boundary layer separation and the vortex flow will occur in the near region up and down the plasma. There are two kinds of boundary layer caused by plasma; the first kind of boundary layer is caused by temperature gradient and the second is caused by the viscosity between flow and the wall. The vortex flow is caused by the pressure differential between outside and inside of plasma locus and the viscosity between flow and the wall. The y coordinate of separation point will decrease with the plasma temperature, The y coordinate of separation point in the near region up the plasma will increase with the increase of flow velocity but it will decrease when the velocity keep on increase. The y coordination of separate point in the near region down the plasma will decrease as the flow velocity increases. And the vortex flow will speed up as the flow velocity increases.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第1期27-32,共6页 Journal of Astronautics
基金 国家自然科学基金(51076168) 部委级试验技术项目
关键词 电弧放电等离子体 流动控制 边界层 数值模拟 Arc discharge plasma Flow control Boundary layer Numerical simulation
  • 相关文献

参考文献16

  • 1Starikovskaia S M. Plasma assisted ignition and combustion [ J ]. J. Phys. D: Appl. Phys, 2006, 39:265-299.
  • 2Roth J R, Dai X. Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device [ C ]. The 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9 -12, Jan, 2006, AIAA 2006-1203.
  • 3Axel V R, Serge L, Philippe M, et al. Plasma assisted combustion : effect of a coaxial DBD on a methane diffusion flame [ J ]. Plasma Sources Sci Technol, 2007, 16 : 149 - 160.
  • 4Suchomel C F, Van D M W, Brooks G. Comparison of high and low fidelity energy based hypersonic vehicle performance parameters [ C ]. The 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9 - 12, Jan, 2006, AIAA 2006 -398.
  • 5车学科.等离子体流动控制机理研究[D].北京:装备指挥技术学院,2010.
  • 6Sergey B L, Dmitry A Y, Victor R S. High-speed inlet customization by surface electrical discharge [ C ]. The 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. 9 - 12, Jan 2006, AIAA 2006 -403.
  • 7Sergey B L, Dmitry A Y, Valery G G, et al. Mechanisms of flow control by near surface electrical discharge generation [ C ]. The 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10 - 13, Jan, 2005, AIAA 2005 -0780.
  • 8Roth J R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma [ J ]. Physics of Plasmas, 2003, 10(5) :2117 -2126.
  • 9Leonov S B, Dmitry A Y, Gromov V G, et al. Mechanisms of flow control by near surface electrical discharge generation [ J ]. Vacuum, 2006, 80( 11 ) : 1199 - 1205.
  • 10Shyy W, Jayaraman G, Andersson A. Modeling of glow discharge-induced fluid dynamics [ J ]. Journal of Applied Physics, 2002, 92 ( 11 ) :6434 - 6443.

二级参考文献15

  • 1Bletzinger P,Ganguly B,van Wie D,Garscadden A 2005 J.Phys.D 38 R33.
  • 2Merriman S,Ploenjes E,Palm P,Adamovich I V 2000 Am.Inst.Aeronaut.Astronaut.Conf.2327.
  • 3Merriman S,Christian A,Meyer R,Kowalczyk B,Palm P,Adamovich I V 2001 Am.Inst.Aeronaut.Astronaut.Conf.0347.
  • 4Meyer R,Palm P,P loenjes E,Ritch J V,Adamovich I V 2001 Am.Inst.Aeronaut.Astronaut.Conf.3059.
  • 5Merriman S,Ploenjes E,Palm P,Adamovich I V 2001 Am.Inst.Aeronaut.Astronaut.J.39 1547.
  • 6Leonov S B,Yarantsev D A,Solov iev V R 2006 Am.Inst.Aeronaut.Astronaut.Conf.403.
  • 7Leonov S B,Bityurin V A,Yarantsev D A 2005 Am.Inst.Aeronaut.Astronaut.Conf.3287.
  • 8Leonov S B,Yarantsev D A,Isaenkov Y I 2005 Am.Inst.Aeronaut.Astronaut.Conf.159.
  • 9Leonov S B 2005 American ASTIA Documents-A 433384.
  • 10Qiu X M,Tang D L,Sun A P,Liu W D,Zeng X J 2007 Chin.Phys.16 186.

共引文献23

同被引文献60

  • 1杨云军,沈清,詹慧玲,周伟江.高超声速小钝锥边界层非对称转捩研究[J].宇航学报,2008,29(1):34-39. 被引量:9
  • 2唐进,李宇红,霍福鹏.振荡射流改善翼型气动性能的实验研究[J].工程热物理学报,2004,25(5):765-768. 被引量:10
  • 3BoneK,AkosDM,BertelsenN,eta1.软件定义的GPS和伽利略接收机[M].杨东凯,张飞舟,张波,译.北京:国防工业出版社,2009:86-90.
  • 4谢钢.GPS原理与接收机设计[M].北京:电子工业出版社,2011.
  • 5Hartunian R A, Stewart G E, Fergason S D, et al. Causes and mitigation of radio frequency blackout during reentry of reusable launch vehicles [ R ]. E1 Segundo, California: The Aerospace Corporation, January 2007.
  • 6Lin T C, Sproul L K. Influence of reentry turbulent plasma fluctuation on EM wave propagation [ J ]. Computers & Fluids, 2006, 35(7): 703-711.
  • 7Ohler S G, Gilchrist B E, Gallimore A D. Electromagnetic signal modification in a localized high-speed plasma flow: simulations and experimental validation of a stationary plasma thruster [ J ]. IEEE Transactions on Plasma Science, 1999, 27 (2) : 587 - 594.
  • 8Heald C B, Wharton M A. Plasma diagnostics with microwaves [ M]. New York: John Wiley & Sons, 1965.
  • 9Sheffield J. Plasma scattering of electromagnetic radiation [ M ]. New York: Academic Press, 1975.
  • 10Stix T H. Waves in plasma [ M ]. New York : Springer-Verlag New York, Inc. , 1992.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部