期刊文献+

微极饱和土波动分析中的变分原理

VARIATIONAL PRINCIPLE FOR WAVE ANALYSIS OF SATURATED MICRO-POLAR SOIL
原文传递
导出
摘要 主要给出饱和多孔微极介质波动方程变分所对应的泛函表达式和有限元离散化方程。首先对u-U形式的饱和多孔微极介质波动方程和边界条件进行Laplace变换,形成力学中的非齐次边值问题,然后构造变分后满足波动方程和边界条件的泛函,最后将有限元插值形式代入泛函表达式得到单元体的有限元离散方程。此方程对微极饱和多孔介质的动力固结问题数值分析具有重要意义。 Functional representations corresponding to the variational principle for the elastic pragmatic wave equations of saturated porous micro-polar medium and their discretized equations obtained by the f'mite element method are presented here. Firstly, the dynamic consolidation equations of saturated micro-polar soil given by u-U format and the relevant boundary conditions are transformed by Laplace transformation, so the non-homogeneous boundary problems in mechanics are engendered. Next, the function which satisfy the wave equations and boundary conditions after variation are composed through mathematic theory. In the end, the interpolation forms of the finite element method are inserted into the functional representations and the discretized equations of an element are obtained. It is significant for the numerical analysis on dynamic consolidation problems of saturated porous micro-polar medium.
作者 付兵 王振宇
出处 《工程力学》 EI CSCD 北大核心 2012年第1期27-31,38,共6页 Engineering Mechanics
关键词 微极 饱和土 固结 泛函 变分 micro-polar saturated soil consolidation function variational principle
  • 相关文献

参考文献11

  • 1Cosserat E, Cosserat F. Th6rie des corps deformable [M]. Paris: Herman A, 1909.
  • 2Eringen A C, Kafadar C B. Polar field theories [M]. New York: Academic Press, 1976:1 --73.
  • 3De Borst R. Numerical modeling of bifurcation and localization in cohesive-frictional material [J]. Pageophsics, 1991(137): 368--390.
  • 4Dietsche A, Steinmarm P, Willam K. Micropolar elasticity and its role in localization [J]. International Journal of Plasticity, 1993(9): 813--831.
  • 5Tejchmann J, Wu W. Numerical study on patterning of shear bands in cosserat continuum [J]. Acta Mechanica, 1993(99): 61 -- 74.
  • 6胡亚元.饱和多孔微极介质的波动方程及其势函数方程[J].地球物理学报,2005,48(5):1132-1140. 被引量:3
  • 7Biot M A. Theory of propagation of elastic waves in fluid-saturated soil [J]. Journal of Acoustic Society of America, 1956(28): 168-- 191.
  • 8Biot M A. Mechanics of deformation and acoustic propagation in porous media [J]. Journal of Applied Mechanics, 1962(33): 1482-- 1498.
  • 9Tejchman J, Niemunis A. FE-studies on shearlocalization in an anistropic micro-polar hypoplastic granular material [J]. Granular Matter, 2006(8): 205-- 220.
  • 10Arslan H, Sture S. Finite element analysis of localization and micro-macro structure relation in granular materials. Part II: Implementation and simulations [J]. Acta Mechanica, 2008(197): 153-- 171.

二级参考文献21

  • 1李伟华,赵成刚.饱和土沉积谷场地对平面SV波的散射问题的解析解[J].地球物理学报,2004,47(5):911-919. 被引量:37
  • 2杨峻,吴世明,蔡袁强.饱和土中弹性波的传播特性[J].振动工程学报,1996,9(2):128-137. 被引量:44
  • 3Deng Zichen,1990年
  • 4钱令希,1990年
  • 5丁伯阳.土层波速与地表脉动[M].兰州大学出版社,1996..
  • 6Singh B, Kumar R. Reflection and refraction of micropolar elastic waves at a loosely bounded interfaces between viscoelastic solid and micropelar elastic solid. Int. J. Engen. Sci., 1998, 36 (2):101 ~ 117
  • 7Cosserat E, Cosserat F. Théorie des Corps Déformable. Herman A,Paris, 1909
  • 8Eringen A C, Kafadar C B. Polar field theories. In: Eringen A C ed.Continuum Physics Ⅳ. New York:Academic Press, 1976. 1 ~ 73
  • 9De Borst R. Numerical modeling of bifurcation and localization in cohesive-frictional material. Pageoph., 1991, 137:368 ~ 390
  • 10Dietsche A, Steinmann P, Willam K. Micropolar elasticity and its role in localization. Int. J. Plast., 1993, 9:813 ~ 831

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部