期刊文献+

一种基于近邻保留的相关反馈图像检索算法 被引量:5

Neighborhood Preserving-based Relevance Feedback Algorithm in Image Retrieval
下载PDF
导出
摘要 图像检索中很多时候会出现相关反馈提供的标注样本数不足,从而导致监督学习方法面临过适应问题的困扰。提出一种能有效使用未标记数据的半监督新型算法:近邻保留回归算法,它通过使已标记数据的观测误差函数最小化,来选择综合性能最好的回归函数,以兼顾图像的语义特征及图像空间的几何结构,并解决过适应问题。实验结果证明,算法能有效提高图像检索系统的性能。 When there are no sufficient feedback samples provided by Relevance feedback,supervised learning methods may suffer from the over-fitting in image retrieval.This paper proposed a novel neighborhood preserving regression algorithm which makes efficient use of unlabeled images.The algorithm selects the function which can minimize the empirical loss on the labeled images,thus,the function can respect both semantic and geometrical structures of the image database.The experimental results show that the algorithm is effective for image retrieval.
出处 《计算机科学》 CSCD 北大核心 2012年第1期281-284,共4页 Computer Science
基金 国家自然科学基金(60702072) 中央高校基本业务费(ZYGX2009X012)资助
关键词 流形学习 近邻保留 相关反馈 图像检索 Manifold learning Neighborhood preserving Relevance feedback Image retrieval
  • 相关文献

参考文献18

  • 1王守觉,孙华,柳培忠,廖英豪,丁兴号,郭东辉.基于仿生形象思维方法的图像检索算法[J].电子学报,2010,38(5):993-997. 被引量:8
  • 2He X. Laplacian regularized d-optimal design for active learning and its application to image retrieval[J]. IEEE Transactions on Image Processing, 2 010,19.
  • 3Rui Y, Huang T S, Ortega M, et al. Relevance feedback., a power tool for interactive content based image retrieval [J ]. IEEE Transactions on Circuit and Systems for Video Technology, 1998,8:644-655.
  • 4许相莉,张利彪,刘向东,于哲舟,周春光.基于粒子群的图像检索相关反馈算法[J].电子学报,2010,38(8):1935-1940. 被引量:33
  • 5He X,Ma W-Y,Zhang H-J. Learning an image manifold for re- trieval[C]//Proceedings of the ACM Conference on Multimedia New York, 2004 : 17-23.
  • 6Si L, Jin R, Hoi S C H. Collaborative image retrieval via regulari zed metric learning[J]. Multimedia Systems, 2006,12( 1 ) : 34-44.
  • 7周刚,邬义杰,宋德玉,李岸.基于MMP三角曲面测地线算法研究[J].中国图象图形学报,2010,15(8):1260-1268. 被引量:2
  • 8Zhou Z-H, Chen K-J, Dai H-B. Enhancing relevance feedback in image retrieval using unlabeled data[C]//ACM Transactions on Information Systems. 2006,24: 219-244.
  • 9魏莱,王守觉.基于流形距离的半监督判别分析[J].软件学报,2010,21(10):2445-2453. 被引量:22
  • 10He X, Ji M, Bao H. A unified active and semi-supervised lear- ning framework for image compression [C]//Proceedings of 1EEE International Conference on Computer Vision and Pattern Re-cognition(CVPR). Miami, FL, 2009.

二级参考文献40

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4R Datta, J Li, J Z Wang, Content-based image retrieval-approaches and trends of the new age[A]. In Proceedings of the Seventh International Workshop on Multimedia Information Retrieval[ C]. Singapore, 2005.253 - 262.
  • 5GuptaA, JainR. Visual information retrieval [ J ]. Communicadons of the ACM, 1997,40(5) :71 - 79.
  • 6J Smith, S Chang. VisualSEEk: a fully automated content-based image query system [ C ]. In ACM Multimedia, Boston, Massachussetts, 1996.87 - 98.
  • 7Flickner M, Sawhney H,Niblack W, et al. Query by imageand video content: the QBIC system[J].Computer, 1995,28(9) : 23 - 32.
  • 8WeiJiang, GuihuaEr. Similarity-based online feature selectionin content-based image retrieval[J].IEEE. Transactions on Image Processing, 2006,15(3) :702 - 712.
  • 9Deng, Y N . An efficient color representation for image retrieval[ J ]. IEEE. Transactions on Image Processing, 2001, 10 ( 1 ) : 140 - 147.
  • 10Li,J Wang,J Z. Real-time computerized annotation of pictures [ A]. In Proceedings of the ACM International Conference on Multimedia[ C ]. October 23 - 27,2006, Santa Barbara, California, USA,2006.911 - 920.

共引文献61

同被引文献49

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部