期刊文献+

局部保留最大信息差v-支持向量机 被引量:10

Locality-preserved Maximum Information Variance v-support Vector Machine
下载PDF
导出
摘要 针对现有模式分类方法不能较好地保持数据空间的局部流形信息或差异信息等问题,提出一种基于流形学习的局部保留最大信息差v-支持向量机(Locality-preserved maximum information variance v-support vector machine,v-LPMIVSVM).对于模式分类问题,v-LPMIVSVM引入局部同类离散度和局部异类离散度概念,分别体现输入空间局部流形结构和局部差异(或判别)信息,通过最小化局部同类离散度和最大化局部异类离散度,优化分类器的投影方向.同时,v-LPMIVSVM采用适于流形数据的测地线距离来度量数据点对间的相似性,以更好地反映流形数据的本质结构.人造和实际数据集实验结果显示所提方法具有良好的泛化性能. The state-of-the-art pattern classifiers can not efficiently preserve the local geometrical structure or the diversity (or discriminative) information of data points embedded in high-dimensional data space, which is useful for pattern recognition. A novel so-called locality-preserved maximum information variance v-support vector machine (v-LPMIVSVM) algorithm is presented based on manifold learning to address those problems mentioned above. The v-LPMIVSVM in- troduces within-locality homogeneous scatter and within-locality heterogeneous scatter, which respectively denote the within-locality manifold information of data points and the within-locality diversity information of data points, thus constructing an optimal classifier with optimal projection weight vector by minimizing the within-locality homogeneous scatter and simultaneously maximizing the within-locality heterogeneous scatter. Meanwhile, the v-LPMIVSVM adopts geodesic distance metric to measure the distance between data in the manifold space, which can reflect the true geometry of the manifold. Experimental results on artificial and real world problems show the outperformed or comparable effectiveness of v-LPMIVSVM.
出处 《自动化学报》 EI CSCD 北大核心 2012年第1期97-108,共12页 Acta Automatica Sinica
基金 国家自然科学基金(60975027 60903100) 宁波市自然科学基金(2009A610080)资助~~
关键词 局部保留投影 V-支持向量机 流形学习 局部同类离散度 局部异类离散度 Locality preserving projections, v-support vector machine (v-SVM), manifold learning, within-locality ho- mogeneous scatter, within-locality heterogeneous scatter
  • 相关文献

参考文献3

二级参考文献43

  • 1邓林,马尽文,裴健.秩和基因选取方法及其在肿瘤诊断中的应用[J].科学通报,2004,49(13):1311-1316. 被引量:18
  • 2李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 3Vanpanik V.Statistical Leaming theory[M].NewYork:Wiley Press,1998.
  • 4Scholkopf B,Smola A.Learming with Kemels-Support Vector Machine,Regularization,Optimization,and Beyond[M].Cambridge,MA:MTT Press,2002.
  • 5Pontil M,Verri A.Support vector machine for 3D object recognition[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(6):673-646.
  • 6Tefas A,Kotropoulos C,Pitas I.Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(7):735-746.
  • 7Zafeiriou S F,Tefas A,Pitas I.Minimum class variance support vector machines[J].IEEE Trans on Image Processing,2007,16(10):2551-2564.
  • 8Joachims T.Transductive Inference for Text Classification using Support vector Machines[A].Proc.ICML-99[C].San Fransisco:Morgan Kaufmann,1999.
  • 9Fung G,Mangasarian O L.Semi-supervised support vector machines for unlabeled data classification[J].Optimization Methods and Software,2001,(15):29-44.
  • 10Tenenbaum J B,Silva V D,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2319-2323.

共引文献56

同被引文献143

  • 1李文峰,徐科,杨朝霖,高阳,周鹏.中厚板表面缺陷在线检测系统的分类器设计[J].钢铁,2006,41(4):47-50. 被引量:5
  • 2宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 3Belkin M, Niyogi P, Sindhwani V. Manifold regulari- zation: A geometric framework for learning from examples [J]. Journal of Machine Learning Research, 2006(7): 2399-2434.
  • 4Zhu Xiaojin. Semi-supervised learning literature survey JR]. University of Wisconsin-Madison: Computer Scien- ces Technical Report 1530, 2005:1-60.
  • 5Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge: Cambridge University Press, 2000:235- 248.
  • 6Zafeiriou S, Tefas A, Pitas 1. Minimum class variance support vector machines[J]. 1EEE Transactions on Image processing, 2007, 16(10):2551-2564.
  • 7Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of IEEE, Special Issue on Applications of Compressive Sensing & Sparse Representation, 20l 0, 98(6): 1031-1044.
  • 8Shivaswamy P, Jebara T. Maximum relative margin and data-dependent regularization[J]. Journal of Machine Learning Research, 2010, 11:747-788.
  • 9Fan Mingyu, Gu Nannan, Qiao Hong, et al. Sparse regularization for semi-supervised classification[J]. Pattern Recognition, 2011, 44(8): 1777-1784.
  • 10He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face recognition using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (3):328-340.

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部