期刊文献+

云计算平台的自适应资源供给 被引量:7

Adaptive Resource Provisioning for Cloud Computing
下载PDF
导出
摘要 云计算系统中IaaS层通过对虚拟化后的基础设施进行池化管理来完成云内基础设施资源的管理。资源的池化为云服务提供按需索取的资源供应以及动态的资源配给。针对现有云计算平台缺乏对资源供应量的自动调整机制的问题,研究了云计算平台中基础设施资源供给的自适应性。通过二次平均时间序列预测法对未来一个时段内的业务负载峰值进行预测,并将预测值交予云平台转化为资源需求。对给定的资源需求,模型通过不断寻找最小虚拟机所能提供的资源与预期资源需求量之差的向量长度,做出虚拟机调度决策。仿真实验表明,本文提出的云计算自适应模型具有良好的精确性及稳定性。 An infrastructure cloud manages the infrastructure as a resource pool, enabling on-demand and dynamic resources provisioning according to resource consumption and service loads. This paper investigates the issue of adaptive resource provisioning for services in clouds. A model is proposed to predict cloud services'peak load and calculate the expected resources consumption. Resource of the best utility for the service is identified and allocated to the service. Simulation results suggest that the proposed adaptive resources provisioning model has a fair accuracy and stable performance.
出处 《电信科学》 北大核心 2012年第1期31-37,共7页 Telecommunications Science
基金 粤港关键领域重点突破基金资助项目(No.20100101-5) 软件工程国家重点实验室开放基金资助项目(No.SKLSE2010-08-22) 广东省中国科学院全面战略合作基金资助项目(No.2009A0091100002 No.2010A090100004) 东莞市重大科技专项基金资助项目(No.2009215102001)
关键词 云计算 基础设施即服务 自适应资源供给 负载预测 即需调度 cloud computing, IaaS, adaptive resource provision, service load prediction, just in time schedule
  • 相关文献

参考文献13

  • 1Ian Foster, Yong Zhao, loan Raicu, et ol. Cloud computing and grid computing 360-degree compared. Grid Computing Environments Workshop, 2008.
  • 2Carsten Binnig, Donald Kossmann, Tim Kraska, et al. How is the weather tomorrow? towards a benchmark for the cloud. Proceedings of the Second International Workshop on Testing Database Systems, ACM New York, NY, USA, 2009.
  • 3云端运算.维基百科,http://zh.wikipedia.org/w/index.php?title =% E9% 9B% B2% E7% AB% AF% E9% 81% 8B% E7% AE% 97&oldid=18129937, 2011.
  • 4Amazon Elastic Compute Cloud (Amazon EC2). http://aws. amazon.com/ec2/, 2011.
  • 5John Viega. Cloud computing and the common man. Computer, 2009(42).
  • 6Jie Yang, Jie Qiu, Ying Li. A profile-based approach to just-intime scalability for cloud applications, Proceedings of IEEE International Conference on Cloud Computing,Bangalore, India, 2009.
  • 7Gansen Zhao, Jiale Liu, Yong Tang, et ol. Cloud computing: a statistics aspect of users. Proceedings of the First International Conference on Cloud Computing, Beijing, China, 2009.
  • 8Gansen Zhao, Chunming Rong, Jiale Liu, et al. Modeling user growth for cloud scalability and availability. Journal of Intemet Technology, 2010, 11(3).
  • 9Gokul Soundararajan, Cristiana Amza. Reactive provisioning of backend databases in shared dynamic content server clusters. ACM Trans Auton,2006, 1(2).
  • 10Jerry Roliaa, Xiaoyun Zhua, Martin Arlitta, et al, Statisical service assurances for applications in utility grid environments. Performance Evaluation, 2004, 11(58): 319-339.

同被引文献81

  • 1陈昊罡,汪小林,王振林,张彬彬,罗英伟,李晓明.DMM:虚拟机的动态内存映射模型[J].中国科学:信息科学,2010,40(12):1543-1558. 被引量:2
  • 2Dawei Sun,Guiran Chang,Changsheng Miao,Xingwei Wang.Analyzing, modeling and evaluating dynamic adaptive fault tolerance strategies in cloud computing environments[J]. The Journal of Supercomputing . 2013 (1)
  • 3Bo Yang,Feng Tan,Yuan-Shun Dai.Performance evaluation of cloud service considering fault recovery[J]. The Journal of Supercomputing . 2013 (1)
  • 4Micah Dowty,Jeremy Sugerman.GPU virtualization on VMware’s hosted I/O architecture[J]. ACM SIGOPS Operating Systems Review . 2009 (3)
  • 5Pajorová E,Hluch L.Complicated simulation visualization based on grid andcloud computing. Cooperative Design, Visualization, and Engineering . 2010
  • 6Sean Marston,Zhi Li,Subhajyoti Bandyopadhyay,Juheng Zhang,Anand Ghalsasi.Cloud computing — The business perspective. Decision Support . 2011
  • 7Qian L,Luo Z G, et al.Cloud Computing:An Overview. Lecture Notes in Computer Notes . 2009
  • 8Asael Dror,Hao Zhang,B Anil Kumar,et al.Virtualized GPU in a Virtual Machine Environment. United States:US 20110102443A1 . 2011
  • 9Jose Duato,Francisco D.Igual,Rafael Mayo,et al.An Efficient Implementation of GPU Virtualization in High Performance Clusters. Lecture Notes in Computer Science . 2010
  • 10Sunit Parmar,Aniruddh Kurtkoti.An Approach To Graphics Passthrough In Cloud Virtual Machines. International Journal of Engineering Research&Technology . 2013

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部