期刊文献+

自适应聚类算法在DDoS攻击检测中的应用 被引量:4

Application of adaptive clustering algorithm on DDoS attacks detection
下载PDF
导出
摘要 针对DDoS攻击检测中k-means算法对初始聚类中心敏感和要求输入聚类数目的缺点,提出了一种基于动态指数和初始聚类中心点选取的自适应聚类算法(Adaptive Clustering Algorithm),并使用该算法建立DDoS攻击检测模型。通过使用LLS_DDoS_1.0数据集对该模型进行测试并与k-means算法对比,实验结果表明,该算法提高了DDoS攻击的检测率,降低了误警率,验证了检测方法的有效性。 The k-means algorithm in DDoS attack detection is sensitive to the initial cluster centers and need to input the number of clusters. For the above two drawbacks, a new adaptive clustering algorithm based on dynamic index and the initial center selection is proposed, and use it to establish the DDoS attack detection model. Then the detection model is tested by using the LLS_DDoS_1.0 data sets, and is compared with the k-means algorithm. The result show that the method improves the detection rate and reduces the false alarm rate. So it is an effective detection method.
出处 《计算机工程与应用》 CSCD 2012年第2期86-89,共4页 Computer Engineering and Applications
关键词 DDOS攻击检测 K-MEANS算法 动态指数 自适应聚类算法 DDoS attacks detection k-means algorithm dynamic index adaptive clustering algorithm
  • 相关文献

参考文献6

  • 1高能,冯登国,向继.一种基于数据挖掘的拒绝服务攻击检测技术[J].计算机学报,2006,29(6):944-951. 被引量:45
  • 2HanJ,KambrM.Datamining:conceptsandtechniques[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007:251-266.
  • 3杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:192
  • 4Bezdek J C, Pal N R.Some new indexes of cluster validity[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybemetics, 1998,28(3) :301-315.
  • 5Jiang Shengyi, Song Xiaoyu.A clustering based method for unsupervised intrusion detections[J].Pattern Recognition Letters,2006, 27(7) : 802-810.
  • 6Wang Wei, Gombault S.Efficient detection of DDoS attacks with important attributes[C]//Third International Conference on Risks and Security of Internet and Systems,2008:61-67.

二级参考文献20

  • 1SkoudisEd.反击黑客[M].北京:机械工业出版社,2002..
  • 2Treshansky A,McGraw R.An overview of clustering algorithms[A].Proceedings of SPIE,The International Society for Optical Engineering[C].2001(4367):41-51.
  • 3Clausi D A.K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation[J].Pattern Recognition,2002,35:1959-1972.
  • 4Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man,and Cybernetics _ Part B:Cybernetics,1998,28(3):301-315.
  • 5Ramze R M,Lelieveldt B P F,Reiber J H C.A new cluster validity indexes for the fuzzy c-mean[J].Pattern Recognition Letters,1998,19:237-246.
  • 6CERT/CC Coordination Center.Trends in Denial of Service Attack Technology.October 2001
  • 7Honig A.,Howard A.,Eskin E.,Stolfo S..Adaptive model generation:An architecture for the deployment of data miningbased intrusion detection systems.Data Mining for Security Applications,Kluwer,2002
  • 8韩家炜等.数据挖掘-概念与技术.北京:高等教育出版社,2001
  • 9Portnoy L.,Eskin E.,Stolfo S.J..Intrusion detection with unlabeled data using clustering.In:Proceedings of the ACM CSS Workshop on Data Mining Applied to Security (DMSA,2001),Philadelphia,PA,2001
  • 10Ertoz L.,Eilertson E.,Lazarevic A.,Tan P.,Dokas P.,Srivastava J.,Kumar.Detection and summarization of novel network attacks using data mining.Technical Report,2003

共引文献235

同被引文献30

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部