期刊文献+

一种新的自适应数字滤波方法的研究 被引量:2

Research on self-adapting digital filter
下载PDF
导出
摘要 自适应数字滤波中理想信号通常难于确定。针对这一问题,根据均方误差和高频信号的特征,将二者结合起来考虑,提出一种新的自适应数字滤波的方法。应用该方法在252组真实实验数据中进行相应的自适应滤波测试,并对滤波结果分别采用BP神经网络和支持向量机两种分类方法进行分类测试。实验结果表明,新方法具备良好的滤波效果。 It is difficult to identify the ideal signals in the self-adapting digital filter.In order to solve this problem,taking account of the mean squared error and the characters of high-frequency signal,this paper puts forward a new self-adapting digital filter.252 real data are used to test the effects of the self-adapting filter.In order to evaluate the filter effects,Back-Propagation(BP)neural network and Support Vector Machine(SVM)are respectively employed to classify the results of the data sets.The experimental results show that this method has the best performance among all filtering methods.
出处 《计算机工程与应用》 CSCD 2012年第2期145-147,共3页 Computer Engineering and Applications
基金 河北省教育厅科研计划项目(No.2007430)
关键词 自适应滤波 均方误差 高频 折中评价 self-adapting filter mean squared error high frequency compromise evaluation
  • 相关文献

参考文献14

  • 1van Waterschoot T, Rombouts G,Moonen M.Optimally regularized adaptive filtering algorithms for room acoustic signal enhancement[J].Sigual Processing, 2008: 594-611.
  • 2Wong A.Adaptive bilateral filtering of image signals using local phase characteristies[J].Sigual Proeessing,200g:1615-1619.
  • 3Stasiunas A, Verikas A.A multi-channel adaptive nonlinear filtering structure realizing some properties of the hearing system[J]. Computers in Biology and Medicine,2005:495-510.
  • 4Choi Sooyong, Lee Te-Won, Hong method for LMS algorithms and applications[J].Signal Processing, 2005 : 1875-1897.
  • 5Liu Hanyu, He Zhenya.A sliding-exponential window RLS adaptive filtering algorithm:properties and applications[J].Signal Processing, 1995: 357-368.
  • 6姚屏,申群太,王俊年.基于自适应神经网络滤波的噪声消除[J].计算机工程与应用,2005,41(28):65-67. 被引量:12
  • 7Tchepel O, Costa A M, Martins H.Determination of background concentrations for air quality models using spectral analysis and filtering of monitoring data[J].Atmospheric Environment, 2009:106-114.
  • 8Erist H, Demir Y.A new algorithm for automatic classification of power quality events based on wavelet transform and SVM[J]. Expert Systems with Applications,2010:4094-4102.
  • 9Basu B.Identification of stiffness degradation in structures using wavelet analysis[J].Construction and Building Materials, 2005: 713-721.
  • 10Rajendra Acharya U,Bhat P S,Kannathal N.Analysis of cardiac health using fractal dimension and wavelet transformation[J]. ITBN-RBN, 2005 : 133-139.

二级参考文献25

  • 1赵波,边馥苓,潘蜀健,陈琳,陈德豪.基于神经网络的GIS空间数学模型研究[J].计算机工程与应用,2006,42(13):197-199. 被引量:4
  • 2范辉,李为吉.MATLAB NN和优化工具箱在设计优化中的应用[J].计算机工程与应用,2006,42(16):187-189. 被引量:3
  • 3M Ibnkahla et al. Satellite mobile communications:Technologies and challenges[C].In:Proceedings of the IEEE,2004;2(2):312~339.
  • 4G Ruggeri,F Beritelli,S Casale. Hybrid multimode/multi-rate CSACELP speech coding for adaptive voice over IP(ICASSP 2001 )[C]. In:Salt Lake City,USA,2001;2:733~736.
  • 5C H Chen,Xianju Wang. Speckle reduction and edge enhancement of NDE C-scan images using ICA[C].In :Review of Quantitative Nondestructive Evaluation, 2004; 23.
  • 6AbhijitSPandya RobertBMacy著 刘勇译.Pattern Recognition with neural networks in C++[M].北京:电子工业出版社,1998..
  • 7Udar Mittal,Nam Phamdo. Signal/noise KLT based approach for enhancing speech degraded by colored noise[J].IEEE Trans Speech Audio Processing,2000;8(2): 159~167.
  • 8S I Amari,H Park,K Fukumizu. Adaptive method for realizing natural gradient learning for multi-layer perceptrons[J].Neural Computation, 2000; 12: 1399~ 1409.
  • 9W Maass,E D Sontag. Neural systems as nonlinear filters[J].Neural Computation, 2000; 12 (8): 1743~1772.
  • 10陈应显.[D].阜新:辽宁工程技术大学,2003.

共引文献15

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部