期刊文献+

表面硅烷化纳米银粉导电胶性能研究(英文) 被引量:13

Study on Properties of Conductive Adhesive Prepared with Silver Nanoparticles Modified by Silane Coupling Agent
原文传递
导出
摘要 采用经硅烷偶联剂KH-560表面改性的纳米银粉作为填料,环氧树脂为基体在180℃固化得到银导电胶。借助透射电子显微镜(TEM)、红外光谱(FTIR)、差示扫描量热法(DSC)等测试手段,对改性后纳米银粉和导电胶进行了表征。研究了银粉含量、固化时间对导电胶性能的影响。结果表明:KH-560改性后的纳米银粉平均粒径为20 nm,分散均匀;KH-560以化学键合的方式吸附在纳米银颗粒的表面。银粉含量、固化时间等均会影响导电胶的性能。当银粉含量为55%,固化时间为15 min时,导电胶的体积电阻率达最小值为2.5×10-3Ω·cm。与未做任何表面处理的纳米银粉填充的导电胶相比, KH-560改性后纳米银粉所得导电胶的电导率提高了3-5倍。 Silver nanoparticles modified by silane coupling agent KH-560 were used as conductive filler to prepare conductive adhesive at 180 ℃ in epoxide resin vehicles.The as-modified Ag nanoparticles and conductive adhesive were characterized by transmission electron microscopy(TEM),Fourier transform infrared spectra(FTIR) and differential scanning calorimetry(DSC).The effects of silver content and curing time on the properties of conductive adhesive were studied.The results show that KH-560 modified Ag powders with a particle size of approximately 20 nm are uniformly dispersed and KH-560 molecules are adsorbed on silver particle surface.Silver content and curing time could influence the properties of conductive adhesive significantly.The bulk resistivity of conductive adhesive with 55 wt% silver nanoparticle and curing time of 15 min reaches a minimal value of 2.5×10-3 Ω·cm.Compared with the conductive adhesive filled with unmodified silver nano-powders,the bulk resistivity of conductive adhesive filled with modified silver nano-powders increases by 3-5 times.
机构地区 莆田学院
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第1期24-27,共4页 Rare Metal Materials and Engineering
基金 Natural Science Foundation of Fujian Province of China (2009J05030) Key Program of Fujian Provincial Department of Science & Technology (2010H0017) The 2011's Fujian Provincial Innovation Experiment Program for University Students (553)
关键词 纳米银粉 导电胶 硅烷偶联剂 KH-560 nano-silver powders conductive adhesive silane coupling agent KH-560
  • 相关文献

参考文献19

  • 1Mir Irfan, Kumar D. International Journal of Adhesion and Adhesives[J], 2008, 28(7): 362.
  • 2Li Yi, Wong C P. Materials Science and Engineering: R: Reports[J], 2006, 51(1-3): 1.
  • 3Park Keunju, Seo Dongseok, Lee Jongkook. Colloids and Surfaces A: Physicochemical and Engineering Aspects[J], 2008, 313-314:351.
  • 4Cheng Wen-Tung, Chih Yu-Wen, Yeha Wei-Ting. International Journal of Adhesion and Adhesives[J], 2007, 27(3): 236.
  • 5Wu H P, Wu X J, Ge M Yet al. Composites Science and Technology[J], 2007, 67(6): 1116.
  • 6Wu H P, Liu J F, Wu X Jet al. International Journal of Adhesion andAdhesives[J], 2006, 26(8): 617.
  • 7Wu Zhenhua, Li Jianzhi, Timmer Douglas et al. International Journal of Adhesion and Adhesives[J], 2009, 29(5): 488.
  • 8Wu H P, Wu X J, Ge M Yet al. Composites Science and Technology[J], 2007, 67(6): 1182.
  • 9Sohn Jong Hwa, Pham Long Quoc, Kang Hytm Suk et al. Radiation Physics and Chemistry[J], 2010, 79(11): 1149.
  • 10XuGuangnian(徐光年) QiaoXueliang(乔学亮) QiuXiaolin(邱小林)etal.稀有金属材料与工程,2010,.

二级参考文献17

  • 1李志民.高密度电子封装的最新进展和发展趋势[J].世界电子元器件,2004(6):82-84. 被引量:3
  • 2张宗涛,胡黎明,袁留锁,顾燕芳,朱孟钦,赵斌.高分子保护化学还原法制备纳米银粉[J].贵金属,1995,16(4):45-51. 被引量:21
  • 3Li Y, Moon K S, Wong C P. Electronics without lead[J]. Science, 2005,308(5727): 1419-1420.
  • 4Li Y, Wong C P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications[J]. Materials Science and Engineering R, 2006,51: 1-35.
  • 5Li Y, Moon K S, Wong C P. Electrical property improvement of electrically conductive adhesives through in-situ replacement by short-chain difunctional acids [J]. IEEE Transactions on Components and Packaging Technologies, 2006,29(1) : 173-178.
  • 6Cheng Y, Matthew Y M F, Bing X. Using novel materials to enhance the efficiency of conductive polymer [C]//2008 Electronic Components and Technology Conference. Lake Buena Vista: U. S. A. , ECTC 2008: 213-218.
  • 7Wagendristel A, Wang Y. An introduction to physics and technology of thin films[M]. London: World Scientific Publishing, 1994.
  • 8GB7124286-1986.胶粘剂剪切冲击强度试验方法[s].
  • 9Aroca R. Surface-enhanced vibrational spectroscopy[M]. Hoboken: John Wiley & Sons Ltd. , 2006.
  • 10Moskovits M, Suh J S. Surface-enhanced spectroscopy[J]. J Am Chem Soc, 1985,107: 6826.

共引文献28

同被引文献137

引证文献13

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部