期刊文献+

基于嵌套粒子群算法的多涡环微下击暴流模型参数选择方法 被引量:5

Parameters Selection Method of Multiple Vortex-Ring Microburst Model Based on Nested Particle Swarm Optimization
下载PDF
导出
摘要 提出一种使用嵌套粒子群算法,根据微下击暴流水平垂直风速最大峰值比选择多涡环微下击暴流模型参数的方法.设计了包括目标群和中间群的嵌套式粒子群结构,使用中间群寻找水平垂直最大风速,并使用目标群最终选择模型参数.用该方法计算了水平垂直风速峰值比在0.3—0.7之间的多组多涡环微下击暴流模型参数,最终生成的微下击暴流场的水平垂直风速峰值比与预设值误差的数量级在10^-4以内. A parameter selecting method of Multiple Vortex Ring Microburst Model(MVRMM) based on NPSO (Nested Particle Swarm Optimization) is propesed, which can select the parameters of MVRMM by any proportion between maximal hori- zontal velocity and maximal vertical velocity. The nested particle swarm structure is designed which contained parent swarm and subswarms. Find the maximal horizontal and vertical velocity with subswarms, and find the optimal parameters with parent swarm. Calculate several parameters of MVRMM by this method, which the proportion between maximal horizontal velocity and maximal vertical velocity is between 0.3 to 0.7.And the error between the factual proportion and the setting proportion is within 10^-4.
作者 吴扬 姜守达
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第1期204-208,共5页 Acta Electronica Sinica
基金 "十一五"国防基础预研(No.B232006XXXX)
关键词 微下击暴流模型 多涡环模型 粒子群优化算法 风切变 飞行仿真 microburst model multiple vortex ring model particle swarm optimization wind shear flight simulation
  • 相关文献

参考文献12

  • 1Zhao Yiyuan, A E Bryson. A simplified ring-vortex downburst model[ A ]. Proceedings of 28th Aerospace Science Meeting [C]. Nebada: NV, 1990.1 - 8.
  • 2高振兴,顾宏斌.用于飞行实时仿真的微下击暴流建模研究[J].系统仿真学报,2008,20(23):6524-6528. 被引量:18
  • 3Thomas A Schultz. Multiple vortex ring model of the DFW mi- crobuvst[ J]. J Aircraft, 1990,27(2) : 163 - 168.
  • 4朱上翔.微下击暴流的流体动力学模型.飞行力学,1984,(02):59-72.
  • 5Wang Zhengchu, Li Jun, Peng Chen. Research in capacitated vehicle muting problem based on modified hybrid particle swarm optimization[A]. Intelligent Computing and Intelligent Systems[ C]. Shanghai, 2009.289 - 293.
  • 6许相莉,张利彪,刘向东,于哲舟,周春光.基于粒子群的图像检索相关反馈算法[J].电子学报,2010,38(8):1935-1940. 被引量:33
  • 7Lu Lin, Luo Qi, Liu Jun-yong, Long Chuan. An improved parti- cle swarm optimization algorithm [ A ]. Granular Computing [ C ]. Hangzhou, 2008.486 - 490.
  • 8Gary G Yen, Wen Fung Leong. Dynamic multiple swarms in multiobjective particle swarm optimization [ J ]. Systems, Man and Cybernetics,2009,39(4) :890 - 911.
  • 9Liu L, Yang S, Wang D. Particle swarm optimization with com- posite particles in dynamic environments[ J]. Systems,Man, and Cybernetics,2010, (99) :1 - 15.
  • 10Clerc M, Kennedy J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation, 2002,6 ( 1 ) :58 - 73.

二级参考文献32

共引文献77

同被引文献31

  • 1刘刚,王行仁,贾荣珍.综合自然环境中变化风场的工程仿真方法[J].系统仿真学报,2006,18(2):297-300. 被引量:9
  • 2朱上翔.微下击暴流的流体动力学模型.飞行力学,1984,(02):59-72.
  • 3Robinson P A, Reid L D. The modeling of turbulence and down- bursts for flight simulators[J].Journal of Aircraft, 1990, 27(8) :700 - 707.
  • 4Qu W, Ji B. Numerical study on formation and diffusion wind fields for thunderstorm mieroburst[C]//Proc, of the Interna- tional Conference on Mechanic Automation and Control Engi- neering, 2010:1389 - 1392.
  • 5Ji B, Qu W. Study on numerical simulation of fluctuating wind for thunderstorm microburst using harmony superposition meth od[C]//Proc, of the International Conference on Mechanic Auto marion and Control Engineering ,2010 : 1233 - 1236.
  • 6Woodfield A A, Woods J F. Worldwide experience of wind shear during 1981 - 1982[C]// Proc. of the AGARD Flight Mechanics Panel Conference on Flight Mechanics and system design lessons from Operational Eacperience, 1983 : 1 - 32.
  • 7Nguyen H, Manuel L, Veers P. Simulation of inflow velocity fields and wind turbine loads during thunderstorm downbursts[C]//Proc. of the Structural Dynamics and Materials Conference, 2010.
  • 8Rainer S, Kenneth P. Differential evolution-A simple and effi- cient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4) :341 - 359.
  • 9Ramezani F, Lotfi S. The modified differential evolution algo- rithm (MDEA)[C]//Proe. of the 4th Asian ConJerence on In telligent Information and Database Systems, 2012:109 - 118.
  • 10Develi I, Yazlik E;. Optimum antenna configuration in MIMO sys- tems: a differential evolution based approach[J]. Wireless Commu- nications and Mobile Computing, 2012, 12(6) :473 - 480.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部