期刊文献+

应用分水岭变换与支持向量机的极化SAR图像分类 被引量:13

Polarimetric SAR Image Classification Using Watershed-Transformation and Support Vector Machine
原文传递
导出
摘要 结合分水岭变换与支持向量机的特性,提出一种新的极化SAR图像分类算法。其基本思想是先通过分水岭变换及区域合并处理,将极化SAR图像分割成一系列同质区;再以同质区为基本单元,进行特征提取及样本选择后采用支持向量机分类。实验结果表明,该算法可有效降低相干斑对分类的影响,与传统基于像素的SVM算法相比,其分类精度有显著的提高,且结果也更易于理解。 Considering the properties of watershed-transformation and support vector machine,a method for classifying polarimetric SAR image is proposed in this paper.First,polarimetric SAR image is segmented into a series of homogenous regions through watershed transformation and region merging process.Then,region-based classification is performed by utilizing support vector machine after feature extraction and sample selection.Experimental results show that the proposed classification method depresses speckle effectively,when in comparison with traditional pixel-based SVM algorithm,the classification accuracy is improved by dramatically and more interpretable result can also be achieved.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第1期7-10,72,共5页 Geomatics and Information Science of Wuhan University
基金 国家863计划资助项目(2007AA12Z143) 国家自然科学基金资助项目(40201039 40771157) 中央高校基本科研业务费专项资金资助项目(20102130201000134)
关键词 极化SAR图像分类 分水岭变换 区域合并处理 支持向量机 polarimetric SAR image classification watershed transformation region merging process support vector machine
  • 相关文献

参考文献2

二级参考文献18

  • 1舒宁.通用型遥感图像理解专家系统的研究[J].武汉测绘科技大学学报,1996,21(2):145-149. 被引量:6
  • 2Lee J G, Grunes M R, Grand[ G De, Polarimetrie SAR Speckle Filtering and Its Implication for Clas- sifieation[J]. IEEE Trans on Geosci Remote Sens- ing, 1999, 37(5) : 2 363-2 373.
  • 3Novak L M, Burl M C. Optimal Speckle Reduction in Polarimetric SAR Imagery [J]. IEEE Trans Aerosp Electron Syst, 1990, 26(2): 293-305.
  • 4Lee J S, Grunes M R, Schuler D L, et al. Scatter- ing-Model-Based Speckle Filtering of Polarimetric SAR Data[J]. IEEE Trans on Geosci Remote Sens- ing, 2006, 44(1): 176-187.
  • 5Lee J S. Digital Image Enhancement and Noise Fil- tering by use of Local Statistics[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1980, 2(2): 165-168.
  • 6Yamaguehi Y, Moriyama T, Ishido M, et al. Four- Component Scattering Model for Polarimet ric SAR Image Decomposition[J]. IEEE Trans Geosci Re- mote Sensing, 2005, 43(8): 1 699-1 706.
  • 7Landgrebe D A.Multispectral Land Sensing:Where From,Where to?[J] IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):414-421.
  • 8Richards J A.Analysis of Remotely Sensed Data:The Formative Decades and the Future[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):422-432.
  • 9Datcu M.Human-Centered Concepts for Exploration and Understanding of Earth Observation Images[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):601-609.
  • 10Wilkinson G G.Results and Implications of a Study of Fifteen Years of Satellite Image Classification Experiments[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):433-440.

共引文献22

同被引文献243

引证文献13

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部