期刊文献+

Evolution of Arbitrary States under Fock-Darwin Hamiltonian and a Time-Dependent Electric Field

Evolution of Arbitrary States under Fock-Darwin Hamiltonian and a Time-Dependent Electric Field
下载PDF
导出
摘要 The method of path integral is employed to calculate the time evolution of the eigenstates of a charged particle under the Fock-Darwin(FD) Hamiltonian subjected to a time-dependent electric field in the plane of the system.An exact analytical expression is established for the evolution of the eigenstates.This result then provides a general solution to the time-dependent Schro¨dinger equation.
作者 XU Xiao-Fei YANG Tao ZHAI Zhi-Yuan PAN Xiao-Yin 徐晓飞;杨涛;翟智远;潘孝胤(Department of Physics,Ningbo University,Ningbo 315211,China)
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第1期123-126,共4页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No. 10805029 Zhejiang Natural Science Foundation underGrant No. R6090717 the K.C. Wong Magna Foundation of Ningbo University
关键词 harmonic-oscillator path integral PROPAGATOR 时间依赖 哈密顿 达尔文 电场 演变 时间演化 解析表达式 薛定谔方程
  • 相关文献

参考文献35

  • 1V. Fock, Z. Phys. 47 (1928) 446.
  • 2C.C. Darwin, Proc. of the Cambridge Philos. Soc. 27 (1930) 86.
  • 3L. Landau, Z. Phys. 64 (1930) 629.
  • 4M. Janssen, O. Viehweger, U. Fastenrath, and J. Hajdu, Introduction to the Theory of the Integer Quantum Hall Effect, VCH, Weinheim (1994).
  • 5L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots, Springer, Berlin (1998);.
  • 6S.M. Reimann and M. Mannien Rev. Mod. Phys. 74 (2002) 1283.
  • 7Y. Ishikyuwa and M. Fukuyama, J. Phys. Soc. Jpn. 68 (1999) 2405;.
  • 8J.P. Gazeau, P.Y. Hsiao, and A. Jellal, Phys. Rev. B 65 (2002) 094427.
  • 9S. Dattagupta and J. Singh, Phys. Rev. Lett. 79 (1997) 961.
  • 10Jishad Kumar, P.A. Sreeram, and Sushanta Dattagupta Phys. Rev. E 79 (2009) 021130.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部