期刊文献+

LoLocalized Spatial Soliton Excitations in(2+1)-Dimensional Nonlinear Schrdinger Equation with Variable Nonlinearity and an External Potential

LoLocalized Spatial Soliton Excitations in(2+1)-Dimensional Nonlinear Schrdinger Equation with Variable Nonlinearity and an External Potential
下载PDF
导出
摘要 We report on the localized spatial soliton excitations in the multidimensional nonlinear Schrodinger equation with radially variable nonlinearity coefficient and an external potential. By using Hirota's binary differential operators, we determine a variety of external potentials and nonlinearity coefficients that can support nonlinear localized solutions of different but desired forms. For some specific external potentials and nonlinearity coefficients, we discuss features of the corresponding (2+1)-dimensional multisolitonic solutions, including ring solitons, lump solitons, and soliton clusters.
作者 ZHONG Wei-Ping Milivoj R.Belic HUANG Ting-Wen 钟卫平;Milivoj R.Belic;HUANG Ting-Wen(Department of Electronic and Information Engineering,Shunde Polytechnic,Guangdong Province,Shunde 528300,China;Texas A&M Univsersity at Qatar,P.O.Box 23874 Doha,Qatar;Institute of Physics,University of Belgrade,P.O.Box 68,11001 Belgrade,Serbia)
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第1期127-132,共6页 理论物理通讯(英文版)
基金 Supported by the Natural Science Foundation of Guangdong Province under Grant No. 1015283001000000,China supported by the NPRP 09-462-1-074 project with the Qatar National Research Foundation
关键词 Tsoliton nonlinear localized excitation Hirota binary operator 非线性薛定谔方程 孤子激发 局部空间 本地化 非线性系数 微分算子 系数和 二进制
  • 相关文献

参考文献24

  • 1Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic, San Diego (2003).
  • 2Y. Silberberg and G.I. Stegeman, Spatial Solitons, Springer, New York (2001).
  • 3F.K. Abdullaev and V.V. Konotop, Nonlinear Waves: Classical and Quantum Aspects, Kluwer, Dordrecht (2004).
  • 4W.P. Zhong, M. Belic, T.W. Huang, and L.Y. Wang, Commun. Theor. Phys. 53 (2010) 749.
  • 5Y.V. Kartashov, V.A. Vysloukh, and L. Torner, Opt. Ex- press 15 (2007) 9378.
  • 6P. Zhong, M. Belic, B.A. Malomed, and T. Huang, Phys. Rev. E 84 (2011) 046611.
  • 7V.N. Serkin and A. Hasegawa, Phys. Rev. Lett. 85 (2000) 4502.
  • 8V.I. Kruglov, A.C. Peacock, and J.D. Harvey, Phys. Rev. Lett. 90 (2003) 113902.
  • 9W.P. Zhong, M. Belic, Y.Q. Lu, and T.W. Huang, Phys. Rev. E 81 (2010) 016605.
  • 10W.P. Zhong and M. Belic, Phys. Rev. E 81 (2010) 056604.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部