期刊文献+

一类广义不变凸函数的最优性条件 被引量:1

Optimality Condition of a Class of Generalized Invex Functions
下载PDF
导出
摘要 通过在Banach空间上定义一类新的广义不变凸函数,给出了这类函数的一些性质,并在该类广义不变凸的条件下,给出了目标函数是实值函数和向量函数的最优性必要条件及向量优化问题的充分必要条件. We introduced new notion of generalized invex functions on Banach space and proved some result.Using these functions,we obtained the conditions of optimality with constraint conditions when the objective function is real-valued and vectorial functions.Moreover,necessity and sufficiency of optimality for vectorial problems were given.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第1期6-10,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11171350) 吉林省自然科学基金(批准号:201115043)
关键词 弱有效解 广义不变凸函数 最优性条件 weakly efficient solution generalized invexity function optimality conditions
  • 相关文献

参考文献9

  • 1Clarke F H. Optimization and Nonsmooth Analysis [ M]. New York: Wiley, 1983.
  • 2Craven B D. Nonsmooth Multiobjective Programming [ J ]. Number Functional Analysis and Optimization, 1989, 10(1/2) : 49-64.
  • 3Mishra S K, Mukherjee R N. On Generalized Convex Multiobjective Nonsmooth Programming [ J ]. Journal of the Australian Mathematical Society: Ser B, 1996, 38: 140-148.
  • 4Abdouni B, El, Thibauh L. Lagrange Multipliers for Pareto Nonsmooth Programming Problems in Banach Spaces [ J ]. Optimization, 1992, 26 (3/4) : 277-285.
  • 5Durea M, Dutta J, Tammer C. Lagrange Muhipliers for e-Pareto Solution in Vector Optimization with Nonsolid Cones in Banach Spaces [J]. Journal of Optim Theory Appl, 2010, 145(1) : 196-211.
  • 6Niculescu C. Optimality and Duality in Muhiobjective Fractional Programming Involving p-Semilocally Type I-Preinvex and Related Functions [ J]. Math Anal Appl, 2007, 335 (1): 7-19.
  • 7王彩玲,孙文娟,杨荣,王晓玲.非光滑复合广义凸多目标规划的最优性条件[J].吉林大学学报(理学版),2008,46(5):877-879. 被引量:1
  • 8Dunfort N, Schwarz J T. Linear Operators Part I : General Theory [ M]. New York: John Wiley & Sons Inc, 1957.
  • 9Girsanov I V. Lectures on Mathematical Theory of Extremu Problems-: Lecture Notes in Economics and Mathematical System [ M ]. Berlin : Springer-Verlag, 1972.

二级参考文献8

  • 1Hanson M A. On Suffciency of the Kuhn-Tucker Conditions [J]. Math Anal Appl, 1981, 80: 544-550.
  • 2Craven B D. Nonsmooth Multiobjective Programming [ J]. Number Functional Analysis anti Optimization, 1989, 10: 49-64.
  • 3Tanaka Y, Joyakumar V. On Generalized Pseudoconvex Functions [ J ]. Math Anal Appl, 1989, 144: 342-355.
  • 4Kuk H. Nonsmooth M uhiohjective Programs with V-p-Invexity [ Jl. Pure Appl Math, 1998, 29: 405-412.
  • 5Jeyakumar V Yang X Q. Convex Composite Multiobjective Nonsmooth Programming [ J]. Math Programming, 1993, 59 : 325-343.
  • 6Mishra S K. On Multiobjective Optimization with Generalized Invexity [J]. Math Anal Appl, 1998, 224: 131-148.
  • 7Mishra S K. Lagrange Multipliers Saddle Points and Scalarizations in Composite Muhiobjective Nonsmooth Programming [J]. Optimization, 1996, 38: 93-100.
  • 8李忠范,王彩玲,刘停战.一类Dini广义凸非光滑多目标规划的充分条件[J].吉林大学学报(理学版),2004,42(1):50-53. 被引量:8

同被引文献9

  • 1Jeyakumar V, Rubinov A M, WU Zhi-you. Sufficient Global Optimality Conditions for Non-convex Quadratic Minimiza- tion Problems with Box Constraints [ J ]. J Glob Optim, 2006, 36 (3) : 471-481.
  • 2Jeyakumar V, "Rubinov A M, WU Zhi-you. Global Optimality Conditions for Non-convex Quadratic Minimiation Problems with Quadratic Constraints [ J]. Math Program Ser, 2007, 110 : 521-541.
  • 3WU Zhi-you, Jeyakumar V, Rubinov A M. Sufficient Conditions for Globally Optimality of Bivalent Nonconvex Quadratic Programs [J~. Journal of Optimization Theory and Applications, 2007, 133( 1 ) : 123-130.
  • 4WU Zhi-you. Sufficient Global Optimalty Conditions for Weakly Convex Minimizition Problems [ J ]. J Glob Optim, 2007, 39(3) : 427-440.
  • 5Jeyakumar V, Rubinov A M, WU Zhi-you. Generalized Fenchel' s Conjugation Formulas and Duality for Abstract Convex Functions [ J ]. Journal of Optimization Theory and Applications, 2007, 132 ( 3 ) : 441-458.
  • 6WU Zhi-you, Rubinov A M. Global Optimality Conditions for Some Classes of Optimization Problems [ J ]. Journal of Optimization Theory and Application, 2010, 145( 1 ) : 164-185.
  • 7Pinar M C. Sufficient Global Optimality Conditions for Biwalent Quadratic Optimization [ J ]. Journal of Optimization Theory and Applications, 2004, 122(2) : 433-440.
  • 8Rubinov A M, WU Zhi-you. Optimality Conditions in Global Optimization and Their Applications [ J ]. Journal of Mathematical Programming, 2009, 120( 1 ) : 101-123.
  • 9Rubinov A M. Abstraet Convexity and Global Opimization [ M ]. Dordencht: Kluwer Academic Publishers, 2000.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部