摘要
证明了当D=2k∏i=1pi,其中pi是互异的奇素数,且pi≡13,17,19,23(mod 24)时不定方程组x2-6y2=1,y2-Dz2=4仅有平凡解z=0.
It has been prored in this paper that when D=2kПi=1Pi ,where Pi should be odd primes, and Pi =13,17,19,23 (rood 24),the simultaneous diophantine equations of x2 -6y2 = 1 and y2 - Dz2 =4 have the only integer solution z = 0.
出处
《云南民族大学学报(自然科学版)》
CAS
2012年第1期57-58,共2页
Journal of Yunnan Minzu University:Natural Sciences Edition
关键词
不定方程组
Pell方程:整数解
diophantine equation
Pell' s equation
integer solution