期刊文献+

奇异线性模型下最小范数二次无偏估计关于误差分布的稳健性 被引量:1

Robustness of Minimum Norm Quadratic Unbiased Estimator of Variance in Terms of Error Distributions under the Singular Linear Model
下载PDF
导出
摘要 讨论奇异线性模型下方差σ2的最小范数二次无偏估计关于误差分布的稳健性问题,得到方差的最小范数二次无偏估计保持最优的误差项的最大分布类.进一步考虑可估计函数Xβ的最佳线性无偏估计的稳健性,得到了Xβ的最佳线性无偏估计与方差σ2的最小范数二次无偏估计同时最优的误差项的最大类. Robustness of the minimum norm quadratic unbiased estimator of variance in terms of error distributions is discussed in singular linear model.We explore the maximal distribution class of error term,where the minimum norm quadratic unbiased estimator of variance σ2 holds its optimality.Furthermore considering robustness of the best linear unbiased estimator of estimable function Xβ,we obtain the maximal distribution class of error term,where the minimum norm quadratic unbiased estimator of variance σ2 and the best linear unbiased estimator of Xβ keep optimality simultaneously.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2012年第1期112-116,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11171058) 国家社会科学基金资助项目(11CTJ008) 浙江省自然科学基金资助项目(Y6110615)
关键词 奇异线性模型 稳健性 最佳线性无偏估计 最小范数二次无偏估计 singular linear model robust best linear unbiased estimator minimum norm quadratic unbiased estimator
  • 相关文献

参考文献10

  • 1RAO C R. Linear statistical inference and its applications[M]. 2nd ed. New York.. Wiley, 1973.
  • 2BAKSALARY J K, KALA R. On equalities between BLUEs, WLSE, and SLSEs[J]. Canad J Statist, 1983,11 (2) :119-123.
  • 3PUNTANEN S.Somematrix results related toa partitioned singular linearmodel[J]. CommStatist: Theory Methods,1996,25(2):269-279.
  • 4PUNTANEN Some further results related toreduced singular linearmodels[J].CommStatist: Theory Methods, 1997,26(2):375-385.
  • 5WERNER H J, YAPAR C. A BLUE decomposition in the general linear regression model[J]. Linear Algebra Appl, 1996,237/238 : 395-404.
  • 6PUNTANEN S,STYAN G P H. The equality of the ordinary leas squares estimator and the best linear unbiased estimator[J]. Amer Statist, 1989,43(3) : 153-161.
  • 7TIAN Yong-ge, WIENSB D P. On equality and proportionality of ordinary least squares, weighted least squares and best linear unbiased estimators in the general linear model[J]. Statistics & Probability letters,2006,76(12):1265- 1272.
  • 8GROB J. A note on equality of MINQUE and simple estimator in the general Gauss-Markov model[J]. Statistics Probability letters,1997,35(4):335-339.
  • 9ZHANG Bao-xue, LUO Ji, LI XirL Robustness of minimum norm of variance under the quadratic unbiased estimator general linear model[J]. Journal of Beijing Institute of Technology, 2002,11(1) : 97-100.
  • 10李树有,张宝学.Robustness of Minimum Norm Quadratic Unbiased Estimator of Variance for the General Linear Model[J].Journal of Mathematical Research and Exposition,2004,24(2):280-284. 被引量:1

二级参考文献12

  • 1BAKSALARY J K, KALA R. On equalities between blues, wlses, and slses [J]. Canad. J.Statist., 1983, 11: 119-123.
  • 2BAKSALARY J K, PUNTANEN S. Weighted-Least-Squares estimation in the general GaussMarkov model [J]. In. Statistical Data Analysis and Inference [Dodge, Y. (ed.)], Elsevier Science Publishers (North-Holland), 1989, 355-368.
  • 3HORN R A, JOHNSON C R. Matrix Analysis [M]. Cambridge University Press, Cambridge.1995.
  • 4HUBER P J. Robust Statistics [M]. John Wiley, New York. 1981.
  • 5KRUSKAL W. When are Gauss-Markov and least squares estimators identical? A CoordinateFree approach [J]. Ann. Math. Statist., 1968, 39: 70-75.
  • 6KSHIRSAGAR A M. A Course In Linear Models [M]. Marcel Dekker, Inc., New York, 1983.
  • 7PUNTANEN S, STYAN G P H. The equality of the ordinary least squares estimator and the best linear unbiased estimator [J]. Amer. Statist., 1989, 43: 153-161.
  • 8RAO C R. Linear Statistical Inference And Its Applications [M]. John Wiley, New York. 1973.
  • 9ROUSSEEUW P J, LER OY A M. Robust Regression And Outlier Detection [M]. John Wiley,New York, 1987.
  • 10WANG S G, CHOW S C. Advanced Linear Models [M]. New York: Marcel Deker, 1994.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部