期刊文献+

一种新的保险投资组合优化模型 被引量:1

A New Model for Insurance Portfolio Optimization
下载PDF
导出
摘要 抓住了风险的不确定性的本质,利用熵能够度量保险投资组合中的风险和推测风险的概率分布的两大功能,以已有的风险模型为基础,在分析用方差度量风险的不足的基础上,提出用熵作为风险的度量,建立了一种新的均值-方差-熵保险投资组合优化模型.该模型的制定更加合理. Taking the nature of risk and using the two functions of entropy to measure the risk of the insurance portfolio and confer the probability of risk, the limitations of measuring risk with variance are analyzed based on a model of risk, the limitations of measuring fish with variance are analyzed a measurement method of risk is put forward with entropy, and the new mean-variance-entropy optimization model of insurance portfolio is proposed. The new model is more reasonable.
出处 《大连交通大学学报》 CAS 2012年第1期101-103,共3页 Journal of Dalian Jiaotong University
关键词 方差 保费 风险度量 entropy variance premium risk measure
  • 相关文献

参考文献6

  • 1FRANCO MOR1CONI. A pricing model in a sensitive insurance market [ J ]. Astin Bulletin, 1980 ( 11 ) :52-60.
  • 2JORION P. Measure the risk in value at risk [ J ]. Financial Analysts Journal, 1996( 11 ) :47-55.
  • 3ARTZNER P. Coherent measure of risk [ J ]. Mathematical finance, 1999(9) :203-228.
  • 4JAYNES E T. Information theory and statistical mechanics [ J ]. The Physical Review, 1957 (106) :620-630.
  • 5李华,李兴斯.均值-叉熵证券投资组合优化模型[J].数学的实践与认识,2005,35(5):65-70. 被引量:14
  • 6叶中行 林建忠.数理金融[M].北京:科学出版社,2002..

二级参考文献4

  • 1Markowitz H. Portfolio Selection: Efficient Diversification of Investments[M]. New York: John Wiley & Sons,New York, 1959. 89-103.
  • 2Wilson A. G. The use of the concept of entropy in system modeling[J]. Operational Research Quarterly, 1970,21:247-265.
  • 3Benth F E, Karlsen K H, Reikvam K. Optimal portfolio selection with consumption and nonlinear integrodifferential equations with gradient constraint: A viscosity solution approach[J]. Finance & Stochastic, 2001,5:275-303.
  • 4Shannon C E. The mathematical theory of communication[J]. Bell Sys Tech J, 1948, 27:279-428.

共引文献19

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部