期刊文献+

HSI和区域生长结合的火灾图像分割方法 被引量:6

Research on Image Segmentation of Fire Based on HSI and Region Growing
下载PDF
导出
摘要 森林火灾图像分割是火灾特征和识别的重要前提,其分割结果将直接影响到火灾识别的准确率。针对常用的图像分割方法进行了分析,在此基础上提出了HSI模型和区域生长结合的森林火灾图像分割方法。该方法首先将原图像转换到HSI空间,提取图像中H、S、I分量;然后在原图像中选取种子,并对其H、S、I分量图像进行区域生长;最后对各分量区域生长后的图像进行合并,最终得出分割图像。并与常用分割方法仿真结果进行了比较,试验结果表明:该算法对森林火灾分割精度高、抗扰性好且应用范围广泛,对森林火灾分割、识别具有重要意义。 The image segmentation of forest fires is the major premise of extraction and recognition of fire and its result affects accuracy of fire identification directly. Common image segmentation methods are analyzed and a new image segmentation method based on HSI and region growing is put forward. First, convert the original image into HSI space and extract H, S and I component of the image separately. Then, choose the seed in original image and do region growing to its H, S and I component. At last, combine each image of regional growth and the image segmentation image is obtained. The new method is compared with the common segmentation method. The simulation result indicates that the new method has better performance of forest fires segmentation accuracy approaching and immunity, is important for forest fn'e segmentation and recognition.
出处 《计算机技术与发展》 2012年第1期191-194,共4页 Computer Technology and Development
基金 山西省高校高新产业化项目(2010002)
关键词 HIS 区域生长 图像分割 森林火灾 HSI region growing image segmentation forest fire
  • 相关文献

参考文献8

  • 1Gonzalez R C. Digital Image Processing Using MATLAB [ M ]. Beijing : Publishing House of Electronics Industry,2009.
  • 2Wang H H, Fan W C. Progress and problems of fire protection in china[J]. Fire Safe Journal, 1997,28 : 191-205.
  • 3杨旭强,冯勇,刘洪臣.一种基于HSI颜色模型的目标提取方法[J].光学技术,2006,32(2):290-292. 被引量:34
  • 4Horng W B, Peng J W, Chen C Y. A new image base real-time flame detection method using color analysis [ J ]. IEEE Transaction on Image Processing,2005,43( 1 ) :100-105.
  • 5Celik T, Demirel H. Fire detection in vedio sequences using statistical color model[ J ]. Journal of Computer Vision,2006,2 (4) :213-216.
  • 6Celik T, Ma Kaikuang. Computer Vision Based Fire Detection in Color Images [ J ]. Pattern Recognition, 2008,34 ( 12 ) : 258 - 263.
  • 7高娜,董爱华.火灾探测中火焰图像分割方法研究[J].河南理工大学学报(自然科学版),2008,27(1):17-20. 被引量:6
  • 8Neil Y. Fire detection and alarm systems [ J ]. Fire Prevention and Fire Engineers Journals ,2004 (5) :53-55.

二级参考文献17

共引文献38

同被引文献52

  • 1赵方,吴必瑞,卢青波.基于MSP430的温室大棚温度远程监控系统[J].农机化研究,2012,34(5):182-187. 被引量:20
  • 2舒立福,田晓瑞,姚树人.2000年全球森林火灾评述[J].世界林业研究,2001,14(5):21-25. 被引量:8
  • 3张进华,庄健,杜海峰,王孙安.一种基于视频多特征融合的火焰识别算法[J].西安交通大学学报,2006,40(7):811-814. 被引量:38
  • 4Toreyin B U. Fire Detection Algorithms Using Muhimodal Sig- nal and Image Analysis [ D ]. Bilkent: Bilkent University, 2009.
  • 5Menaka E,Kumar S S. Forest Fire Detection Using Texture A- nalysis[ J ]. International Journal of Computer Applications in Engineering Sciences ,2011,1 ( 1 ) :64-68.
  • 6Angayarkkani K, Radhakrishnan N. An Intelligent System for Effective Forest Fire Detection Using Spatial Data[ J] Interna- tional Journal of Computer Science and Network Security, 2009,9(3 ) :202-208.
  • 7Boles S H,Verbyla D L. Comparison of Three AVHRR-based Fire Detection Algorithms for Interior Alaska [ J ]. Remote Sensing of Environment,2000,72( 1 ) :1-16.
  • 8Celik T, Demirel H. Fire detection in video sequences using a generic color model[J]. Fire Safety J, 2009,44 (2) : 147.
  • 9Cho B H,Bae J W,Jung S H. Image processing-based fire detection system using statistic color model [C]. Int Conf on Advanced Language Processing and Web Information Technology. New York: IEEE,2008:245--250.
  • 10Ma Li,Wu Kaihua, Zhu L. Fire smoke detection in video images using kalman filter and gaussian mixture color model[C]. 2010 International Conference on Artificial Intelligence and Computational Intelligence(AICI) Proceedings, 2010 (1):484.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部